Files
Upsilon/poincare/src/norm_pdf.cpp
2019-09-30 17:26:24 +02:00

41 lines
1.7 KiB
C++

#include <poincare/norm_pdf.h>
#include <poincare/layout_helper.h>
#include <poincare/normal_distribution.h>
#include <poincare/serialization_helper.h>
#include <assert.h>
namespace Poincare {
constexpr Expression::FunctionHelper NormPDF::s_functionHelper;
int NormPDFNode::numberOfChildren() const { return NormPDF::s_functionHelper.numberOfChildren(); }
Expression NormPDFNode::setSign(Sign s, ReductionContext reductionContext) {
assert(s == Sign::Positive);
return NormPDF(this);
}
Layout NormPDFNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
return LayoutHelper::Prefix(NormPDF(this), floatDisplayMode, numberOfSignificantDigits, NormPDF::s_functionHelper.name());
}
int NormPDFNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
return SerializationHelper::Prefix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, NormPDF::s_functionHelper.name());
}
template<typename T>
Evaluation<T> NormPDFNode::templatedApproximate(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
Evaluation<T> xEvaluation = childAtIndex(0)->approximate(T(), context, complexFormat, angleUnit);
Evaluation<T> muEvaluation = childAtIndex(1)->approximate(T(), context, complexFormat, angleUnit);
Evaluation<T> varEvaluation = childAtIndex(2)->approximate(T(), context, complexFormat, angleUnit);
T x = xEvaluation.toScalar();
T mu = muEvaluation.toScalar();
T sigma = std::sqrt(varEvaluation.toScalar());
// EvaluateAtAbscissa handles bad mu and var values
return Complex<T>::Builder(NormalDistribution::EvaluateAtAbscissa(x, mu, sigma));
}
}