mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
This replaces unnecessary double-precision soft-float operations with single-precision floating-point operations, mainly by casting. In a couple places I also replace a function call with a constant.
274 lines
9.4 KiB
C++
274 lines
9.4 KiB
C++
#include <poincare/solver.h>
|
|
#include <poincare/ieee754.h>
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <cmath>
|
|
|
|
namespace Poincare {
|
|
|
|
Coordinate2D<double> Solver::BrentMinimum(double ax, double bx, ValueAtAbscissa evaluation, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
|
|
/* Bibliography: R. P. Brent, Algorithms for finding zeros and extrema of
|
|
* functions without calculating derivatives */
|
|
if (ax > bx) {
|
|
return BrentMinimum(bx, ax, evaluation, context, complexFormat, angleUnit, context1, context2, context3);
|
|
}
|
|
double e = 0.0;
|
|
double a = ax;
|
|
double b = bx;
|
|
double x = a+k_goldenRatio*(b-a);
|
|
double v = x;
|
|
double w = x;
|
|
double fx = evaluation(x, context, complexFormat, angleUnit, context1, context2, context3);
|
|
double fw = fx;
|
|
double fv = fw;
|
|
|
|
double d = NAN;
|
|
double u, fu;
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
double m = 0.5*(a+b);
|
|
double tol1 = k_sqrtEps*std::fabs(x)+1E-10;
|
|
double tol2 = 2.0*tol1;
|
|
if (std::fabs(x-m) <= tol2-0.5*(b-a)) {
|
|
double middleFax = evaluation((x+a)/2.0, context, complexFormat, angleUnit, context1, context2, context3);
|
|
double middleFbx = evaluation((x+b)/2.0, context, complexFormat, angleUnit, context1, context2, context3);
|
|
double fa = evaluation(a, context, complexFormat, angleUnit, context1, context2, context3);
|
|
double fb = evaluation(b, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (middleFax-fa <= k_sqrtEps && fx-middleFax <= k_sqrtEps && fx-middleFbx <= k_sqrtEps && middleFbx-fb <= k_sqrtEps) {
|
|
return Coordinate2D<double>(x, fx);
|
|
}
|
|
}
|
|
double p = 0;
|
|
double q = 0;
|
|
double r = 0;
|
|
if (std::fabs(e) > tol1) {
|
|
r = (x-w)*(fx-fv);
|
|
q = (x-v)*(fx-fw);
|
|
p = (x-v)*q -(x-w)*r;
|
|
q = 2.0*(q-r);
|
|
if (q>0.0) {
|
|
p = -p;
|
|
} else {
|
|
q = -q;
|
|
}
|
|
r = e;
|
|
e = d;
|
|
}
|
|
if (std::fabs(p) < std::fabs(0.5*q*r) && p<q*(a-x) && p<q*(b-x)) {
|
|
d = p/q;
|
|
u= x+d;
|
|
if (u-a < tol2 || b-u < tol2) {
|
|
d = x < m ? tol1 : -tol1;
|
|
}
|
|
} else {
|
|
e = x<m ? b-x : a-x;
|
|
d = k_goldenRatio*e;
|
|
}
|
|
u = x + (std::fabs(d) >= tol1 ? d : (d>0 ? tol1 : -tol1));
|
|
fu = evaluation(u, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (fu <= fx) {
|
|
if (u<x) {
|
|
b = x;
|
|
} else {
|
|
a = x;
|
|
}
|
|
v = w;
|
|
fv = fw;
|
|
w = x;
|
|
fw = fx;
|
|
x = u;
|
|
fx = fu;
|
|
} else {
|
|
if (u<x) {
|
|
a = u;
|
|
} else {
|
|
b = u;
|
|
}
|
|
if (fu <= fw || w == x) {
|
|
v = w;
|
|
fv = fw;
|
|
w = u;
|
|
fw = fu;
|
|
} else if (fu <= fv || v == x || v == w) {
|
|
v = u;
|
|
fv = fu;
|
|
}
|
|
}
|
|
}
|
|
return Coordinate2D<double>(x, fx);
|
|
}
|
|
|
|
double Solver::BrentRoot(double ax, double bx, double precision, ValueAtAbscissa evaluation, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
|
|
if (ax > bx) {
|
|
return BrentRoot(bx, ax, precision, evaluation, context, complexFormat, angleUnit, context1, context2, context3);
|
|
}
|
|
double a = ax;
|
|
double b = bx;
|
|
double c = bx;
|
|
double d = b-a;
|
|
double e = b-a;
|
|
double fa = evaluation(a, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (fa == 0) {
|
|
// We are looking for a root. If a is already a root, just return it.
|
|
return a;
|
|
}
|
|
double fb = evaluation(b, context, complexFormat, angleUnit, context1, context2, context3);
|
|
double fc = fb;
|
|
for (int i = 0; i < 100; i++) {
|
|
if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {
|
|
c = a;
|
|
fc = fa;
|
|
e = b-a;
|
|
d = b-a;
|
|
}
|
|
if (std::fabs(fc) < std::fabs(fb)) {
|
|
a = b;
|
|
b = c;
|
|
c = a;
|
|
fa = fb;
|
|
fb = fc;
|
|
fc = fa;
|
|
}
|
|
double tol1 = 2.0*DBL_EPSILON*std::fabs(b)+0.5*precision;
|
|
double xm = 0.5*(c-b);
|
|
if (std::fabs(xm) <= tol1 || fb == 0.0) {
|
|
double fbcMiddle = evaluation(0.5*(b+c), context, complexFormat, angleUnit, context1, context2, context3);
|
|
bool isContinuous = (fb <= fbcMiddle && fbcMiddle <= fc) || (fc <= fbcMiddle && fbcMiddle <= fb);
|
|
if (isContinuous) {
|
|
return b;
|
|
}
|
|
}
|
|
if (std::fabs(e) >= tol1 && std::fabs(fa) > std::fabs(fb)) {
|
|
double s = fb/fa;
|
|
double p = 2.0*xm*s;
|
|
double q = 1.0-s;
|
|
if (a != c) {
|
|
q = fa/fc;
|
|
double r = fb/fc;
|
|
p = s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0));
|
|
q = (q-1.0)*(r-1.0)*(s-1.0);
|
|
}
|
|
q = p > 0.0 ? -q : q;
|
|
p = std::fabs(p);
|
|
double min1 = 3.0*xm*q-std::fabs(tol1*q);
|
|
double min2 = std::fabs(e*q);
|
|
if (2.0*p < (min1 < min2 ? min1 : min2)) {
|
|
e = d;
|
|
d = p/q;
|
|
} else {
|
|
d = xm;
|
|
e =d;
|
|
}
|
|
} else {
|
|
d = xm;
|
|
e = d;
|
|
}
|
|
a = b;
|
|
fa = fb;
|
|
if (std::fabs(d) > tol1) {
|
|
b += d;
|
|
} else {
|
|
b += xm > 0.0 ? tol1 : -tol1;
|
|
}
|
|
fb = evaluation(b, context, complexFormat, angleUnit, context1, context2, context3);
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
|
|
Coordinate2D<double> Solver::IncreasingFunctionRoot(double ax, double bx, double resultPrecision, ValueAtAbscissa evaluation, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3, double * resultEvaluation) {
|
|
assert(ax < bx);
|
|
double min = ax;
|
|
double max = bx;
|
|
double currentAbscissa = min;
|
|
double eval = evaluation(currentAbscissa, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (eval >= 0) {
|
|
if (resultEvaluation != nullptr) {
|
|
*resultEvaluation = eval;
|
|
}
|
|
// The minimal value is already bigger than 0, return min.
|
|
return Coordinate2D<double>(currentAbscissa, eval);
|
|
}
|
|
while (max - min > resultPrecision) {
|
|
currentAbscissa = (min + max) / 2.0;
|
|
/* If the mean between min and max is the same double (in IEEE754
|
|
* representation) as one of the bounds - min or max, we look for another
|
|
* representable double between min and max strictly. If there is, we choose
|
|
* it instead, otherwise, we reached the most precise result possible. */
|
|
if (currentAbscissa == min) {
|
|
currentAbscissa = IEEE754<double>::next(min);
|
|
}
|
|
if (currentAbscissa == max) {
|
|
currentAbscissa = IEEE754<double>::previous(max);
|
|
}
|
|
if (currentAbscissa == min || currentAbscissa == max) {
|
|
break;
|
|
}
|
|
eval = evaluation(currentAbscissa, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (eval > DBL_EPSILON) {
|
|
max = currentAbscissa;
|
|
} else if (eval < -DBL_EPSILON) {
|
|
min = currentAbscissa;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (resultEvaluation != nullptr) {
|
|
*resultEvaluation = eval;
|
|
}
|
|
return Coordinate2D<double>(currentAbscissa, eval);
|
|
}
|
|
|
|
template<typename T>
|
|
T Solver::CumulativeDistributiveInverseForNDefinedFunction(T * probability, ValueAtAbscissa evaluation, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
|
|
T precision = sizeof(T) == sizeof(double) ? DBL_EPSILON : FLT_EPSILON;
|
|
assert(*probability <= (((T)1.0) - precision) && *probability >= precision);
|
|
(void) precision;
|
|
T p = 0.0;
|
|
int k = 0;
|
|
T delta = 0.0;
|
|
do {
|
|
delta = std::fabs(*probability-p);
|
|
p += evaluation(k++, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (p >= k_maxProbability && std::fabs(*probability-(T)1.0) <= delta) {
|
|
*probability = (T)1.0;
|
|
return (T)(k-1);
|
|
}
|
|
} while (std::fabs(*probability-p) <= delta && k < k_maxNumberOfOperations && p < (T)1.0);
|
|
p -= evaluation(--k, context, complexFormat, angleUnit, context1, context2, context3);
|
|
if (k == k_maxNumberOfOperations) {
|
|
*probability = (T)1.0;
|
|
return INFINITY;
|
|
}
|
|
*probability = p;
|
|
if (std::isnan(p)) {
|
|
return NAN;
|
|
}
|
|
return k-1;
|
|
}
|
|
|
|
template<typename T>
|
|
T Solver::CumulativeDistributiveFunctionForNDefinedFunction(T x, ValueAtAbscissa evaluation, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
|
|
int end = std::round(x);
|
|
double result = 0.0;
|
|
for (int k = 0; k <=end; k++) {
|
|
result += evaluation(k, context, complexFormat, angleUnit, context1, context2, context3);
|
|
/* Avoid too long loop */
|
|
if (k > k_maxNumberOfOperations) {
|
|
break;
|
|
}
|
|
if (result >= k_maxProbability) {
|
|
result = 1.0;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template float Solver::CumulativeDistributiveInverseForNDefinedFunction(float *, ValueAtAbscissa, Context *, Preferences::ComplexFormat, Preferences::AngleUnit, const void *, const void *, const void *);
|
|
template double Solver::CumulativeDistributiveInverseForNDefinedFunction(double *, ValueAtAbscissa, Context *, Preferences::ComplexFormat, Preferences::AngleUnit, const void *, const void *, const void *);
|
|
template float Solver::CumulativeDistributiveFunctionForNDefinedFunction(float, ValueAtAbscissa, Context *, Preferences::ComplexFormat, Preferences::AngleUnit, const void *, const void *, const void *);
|
|
template double Solver::CumulativeDistributiveFunctionForNDefinedFunction(double, ValueAtAbscissa, Context *, Preferences::ComplexFormat, Preferences::AngleUnit, const void *, const void *, const void *);
|
|
|
|
}
|