Files
Upsilon/apps/solver/equation_store.cpp
2018-06-07 16:21:39 +02:00

335 lines
16 KiB
C++
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#include "equation_store.h"
#include <limits.h>
using namespace Poincare;
namespace Solver {
EquationStore::EquationStore() :
m_type(Type::LinearSystem),
m_numberOfSolutions(0),
m_exactSolutionExactLayouts{},
m_exactSolutionApproximateLayouts{}
{
}
EquationStore::~EquationStore() {
tidySolution();
}
Equation * EquationStore::emptyModel() {
static Equation e;
return &e;
}
void EquationStore::setModelAtIndex(Shared::ExpressionModel * e, int i) {
m_equations[i] = *(static_cast<Equation *>(e));;
}
void EquationStore::tidy() {
ExpressionModelStore::tidy();
tidySolution();
}
Poincare::ExpressionLayout * EquationStore::exactSolutionLayoutAtIndex(int i, bool exactLayout) {
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
if (exactLayout) {
return m_exactSolutionExactLayouts[i];
} else {
return m_exactSolutionApproximateLayouts[i];
}
}
double EquationStore::intervalBound(int index) const {
assert(m_type == Type::Monovariable && index >= 0 && index < 2);
return m_intervalApproximateSolutions[index];
}
void EquationStore::setIntervalBound(int index, double value) {
assert(m_type == Type::Monovariable && index >= 0 && index < 2);
m_intervalApproximateSolutions[index] = value;
if (m_intervalApproximateSolutions[0] > m_intervalApproximateSolutions[1]) {
if (index == 0) {
m_intervalApproximateSolutions[1] = m_intervalApproximateSolutions[0]+1;
} else {
m_intervalApproximateSolutions[0] = m_intervalApproximateSolutions[1]-1;
}
}
}
double EquationStore::approximateSolutionAtIndex(int i) {
assert(m_type == Type::Monovariable && i >= 0 && i < m_numberOfSolutions);
return m_approximateSolutions[i];
}
bool EquationStore::haveMoreApproximationSolutions(Context * context) {
if (m_numberOfSolutions < k_maxNumberOfEquations) {
return false;
}
double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision;
return !std::isnan(definedModelAtIndex(0)->standardForm(context)->nextRoot(m_variables[0], m_approximateSolutions[m_numberOfSolutions-1], step, m_intervalApproximateSolutions[1], *context));
}
void EquationStore::approximateSolve(Poincare::Context * context) {
assert(m_variables[0] != 0 && m_variables[1] == 0);
assert(m_type == Type::Monovariable);
m_numberOfSolutions = 0;
double start = m_intervalApproximateSolutions[0];
double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision;
for (int i = 0; i < k_maxNumberOfApproximateSolutions; i++) {
m_approximateSolutions[i] = definedModelAtIndex(0)->standardForm(context)->nextRoot(m_variables[0], start, step, m_intervalApproximateSolutions[1], *context);
if (std::isnan(m_approximateSolutions[i])) {
break;
} else {
start = m_approximateSolutions[i];
m_numberOfSolutions++;
}
}
}
EquationStore::Error EquationStore::exactSolve(Poincare::Context * context) {
tidySolution();
/* 0- Get unknown variables */
m_variables[0] = 0;
int numberOfVariables = 0;
for (int i = 0; i < numberOfDefinedModels(); i++) {
if (definedModelAtIndex(i)->standardForm(context) == nullptr) {
return Error::EquationUndefined;
}
numberOfVariables = definedModelAtIndex(i)->standardForm(context)->getVariables(m_variables);
if (numberOfVariables < 0) {
return Error::TooManyVariables;
}
}
/* 1- Linear System? */
/* Create matrix coefficients and vector constants as:
* coefficients*(x y z ...) = constants */
Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables];
Expression * constants[k_maxNumberOfEquations];
bool isLinear = true; // Invalid the linear system if one equation is non-linear
for (int i = 0; i < numberOfDefinedModels(); i++) {
isLinear = isLinear && definedModelAtIndex(i)->standardForm(context)->getLinearCoefficients(m_variables, coefficients[i], &constants[i], *context);
// Clean allocated memory if the system is not linear
if (!isLinear) {
for (int j = 0; j < i; j++) {
for (int k = 0; k < numberOfVariables; k++) {
delete coefficients[j][k];
}
delete constants[j];
}
if (numberOfDefinedModels() > 1 || numberOfVariables > 1) {
return Error::NonLinearSystem;
} else {
break;
}
}
}
/* Initialize result */
Expression * exactSolutions[k_maxNumberOfExactSolutions];
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
exactSolutions[i] = nullptr;
}
EquationStore::Error error;
if (isLinear) {
m_type = Type::LinearSystem;
error = resolveLinearSystem(exactSolutions, coefficients, constants, context);
} else {
/* 2- Polynomial & Monovariable? */
assert(numberOfVariables == 1 && numberOfDefinedModels() == 1);
char x = m_variables[0];
Expression * polynomialCoefficients[Expression::k_maxNumberOfPolynomialCoefficients];
int degree = definedModelAtIndex(0)->standardForm(context)->getPolynomialCoefficients(x, polynomialCoefficients, *context);
if (degree < 0) {
/* 3- Monovariable non-polynomial */
m_type = Type::Monovariable;
m_intervalApproximateSolutions[0] = -10;
m_intervalApproximateSolutions[1] = 10;
return Error::RequireApproximateSolution;
} else {
m_type = Type::PolynomialMonovariable;
error = oneDimensialPolynomialSolve(exactSolutions, polynomialCoefficients, degree, context);
}
}
/* Turn the results in layouts */
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
if (exactSolutions[i]) {
m_exactSolutionExactLayouts[i] = exactSolutions[i]->createLayout();
Expression * approximate = exactSolutions[i]->approximate<double>(*context);
m_exactSolutionApproximateLayouts[i] = approximate->createLayout();
/* Check for identity between exact and approximate layouts */
char exactBuffer[Shared::ExpressionModel::k_expressionBufferSize];
char approximateBuffer[Shared::ExpressionModel::k_expressionBufferSize];
m_exactSolutionExactLayouts[i]->writeTextInBuffer(exactBuffer, Shared::ExpressionModel::k_expressionBufferSize, Preferences::sharedPreferences()->numberOfSignificantDigits());
m_exactSolutionApproximateLayouts[i]->writeTextInBuffer(approximateBuffer, Shared::ExpressionModel::k_expressionBufferSize, Preferences::sharedPreferences()->numberOfSignificantDigits());
m_exactSolutionIdentity[i] = strcmp(exactBuffer, approximateBuffer) == 0;
/* Check for equality between exact and approximate layouts */
if (!m_exactSolutionIdentity[i]) {
m_exactSolutionEquality[i] = exactSolutions[i]->isEqualToItsApproximationLayout(approximate, Shared::ExpressionModel::k_expressionBufferSize, Preferences::sharedPreferences()->numberOfSignificantDigits(), *context);
}
delete approximate;
delete exactSolutions[i];
}
}
return error;
}
EquationStore::Error EquationStore::resolveLinearSystem(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables], Expression * constants[k_maxNumberOfEquations], Context * context) {
Expression::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
int n = strlen(m_variables); // n unknown variables
int m = numberOfDefinedModels(); // m equations
/* Create the matrix (A | b) for the equation Ax=b */
const Expression ** operandsAb = new const Expression * [(n+1)*m];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
operandsAb[i*(n+1)+j] = coefficients[i][j];
}
operandsAb[i*(n+1)+n] = constants[i];
}
Matrix * Ab = new Matrix(operandsAb, m, n+1, false);
delete [] operandsAb;
// Compute the rank of (A | b)
int rankAb = Ab->rank(*context, angleUnit, true);
// Initialize the number of solutions
m_numberOfSolutions = INT_MAX;
/* If the matrix has one null row except the last column, the system is
* inconsistent (equivalent to 0 = x with x non-null */
for (int j = m-1; j >= 0; j--) {
bool rowWithNullCoefficients = true;
for (int i = 0; i < n; i++) {
if (!Ab->matrixOperand(j, i)->isRationalZero()) {
rowWithNullCoefficients = false;
break;
}
}
if (rowWithNullCoefficients && !Ab->matrixOperand(j, n)->isRationalZero()) {
m_numberOfSolutions = 0;
}
}
if (m_numberOfSolutions > 0) {
// if rank(A | b) < n, the system has an infinite number of solutions
if (rankAb == n && n > 0) {
// Otherwise, the system has n solutions which correspond to the last column
m_numberOfSolutions = n;
for (int i = 0; i < m_numberOfSolutions; i++) {
Expression * sol = Ab->matrixOperand(i,n);
exactSolutions[i] = sol;
Ab->detachOperand(sol);
Expression::Simplify(&exactSolutions[i], *context);
}
}
}
delete Ab;
return Error::NoError;
}
EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[Expression::k_maxNumberOfPolynomialCoefficients], int degree, Context * context) {
/* Equation ax^2+bx+c = 0 */
assert(degree == 2);
// Compute 4ac
Expression * deltaSubOperand[3] = {new Rational(4), coefficients[0]->clone(), coefficients[2]->clone()};
// Compute delta = b*b-4ac
Expression * delta = new Subtraction(new Power(coefficients[1]->clone(), new Rational(2), false), new Multiplication(deltaSubOperand, 3, false), false);
Expression::Simplify(&delta, *context);
if (delta->isRationalZero()) {
// if delta = 0, x0=x1= -b/(2a)
exactSolutions[0] = new Division(new Opposite(coefficients[1], false), new Multiplication(new Rational(2), coefficients[2]), false);
m_numberOfSolutions = 1;
} else {
// x0 = (-b-sqrt(delta))/(2a)
exactSolutions[0] = new Division(new Subtraction(new Opposite(coefficients[1]->clone(), false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2]->clone()), false);
// x1 = (-b+sqrt(delta))/(2a)
exactSolutions[1] = new Division(new Addition(new Opposite(coefficients[1], false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2]), false);
m_numberOfSolutions = 2;
}
exactSolutions[m_numberOfSolutions] = delta;
delete coefficients[0];
for (int i = 0; i < m_numberOfSolutions; i++) {
Expression::Simplify(&exactSolutions[i], *context);
}
return Error::NoError;
#if 0
if (degree == 3) {
Expression * a = coefficients[3];
Expression * b = coefficients[2];
Expression * c = coefficients[1];
Expression * d = coefficients[0];
// Delta = b^2*c^2+18abcd-27a^2*d^2-4ac^3-4db^3
Expression * mult0Operands[2] = {new Power(b->clone(), new Rational(2), false), new Power(c->clone(), new Rational(2), false)};
Expression * mult1Operands[5] = {new Rational(18), a->clone(), b->clone(), c->clone(), d->clone()};
Expression * mult2Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), new Power(d->clone(), new Rational(2), false)};
Expression * mult3Operands[3] = {new Rational(-4), a->clone(), new Power(c->clone(), new Rational(3), false)};
Expression * mult4Operands[3] = {new Rational(-4), d->clone(), new Power(b->clone(), new Rational(3), false)};
Expression * add0Operands[5] = {new Multiplication(mult0Operands, 2, false), new Multiplication(mult1Operands, 5, false), new Multiplication(mult2Operands, 3, false), new Multiplication(mult3Operands, 3, false), new Multiplication(mult4Operands, 3, false)};
Expression * delta = new Addition(add0Operands, 5, false);
Simplify(&delta, *context);
// Delta0 = b^2-3ac
Expression * mult5Operands[3] = {new Rational(3), a->clone(), c->clone()};
Expression * delta0 = new Subtraction(new Power(b->clone(), new Rational(2), false), new Multiplication(mult5Operands, 3, false), false);
Reduce(&delta0, *context);
if (delta->isRationalZero()) {
if (delta0->isRationalZero()) {
// delta0 = 0 && delta = 0 --> x0 = -b/(3a)
delete delta0;
m_exactSolutions[0] = new Opposite(new Division(b, new Multiplication(new Rational(3), a, false), false), false);
m_numberOfSolutions = 1;
delete c;
delete d;
} else {
// delta = 0 --> x0 = (9ad-bc)/(2delta0)
// --> x1 = (4abc-9a^2d-b^3)/(a*delta0)
Expression * mult6Operands[3] = {new Rational(9), a, d};
m_exactSolutions[0] = new Division(new Subtraction(new Multiplication(mult6Operands, 3, false), new Multiplication(b, c, false), false), new Multiplication(new Rational(2), delta0, false), false);
Expression * mult7Operands[4] = {new Rational(4), a->clone(), b->clone(), c->clone()};
Expression * mult8Operands[3] = {new Rational(-9), new Power(a->clone(), new Rational(2), false), d->clone()};
Expression * add1Operands[3] = {new Multiplication(mult7Operands, 4, false), new Multiplication(mult8Operands,3, false), new Opposite(new Power(b->clone(), new Rational(3), false), false)};
m_exactSolutions[1] = new Division(new Addition(add1Operands, 3, false), new Multiplication(a->clone(), delta0, false), false);
m_numberOfSolutions = 2;
}
} else {
// delta1 = 2b^3-9abc+27a^2*d
Expression * mult9Operands[4] = {new Rational(-9), a, b, c};
Expression * mult10Operands[3] = {new Rational(27), new Power(a->clone(), new Rational(2), false), d};
Expression * add2Operands[3] = {new Multiplication(new Rational(2), new Power(b->clone(), new Rational(3), false), false), new Multiplication(mult9Operands, 4, false), new Multiplication(mult10Operands, 3, false)};
Expression * delta1 = new Addition(add2Operands, 3, false);
// C = Root((delta1+sqrt(-27a^2*delta))/2, 3)
Expression * mult11Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), (*delta)->clone()};
Expression * c = new Power(new Division(new Addition(delta1, new SquareRoot(new Multiplication(mult11Operands, 3, false), false), false), new Rational(2), false), new Rational(1,3), false);
Expression * unary3roots[2] = {new Addition(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false), new Subtraction(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false)};
// x_k = -1/(3a)*(b+C*z+delta0/(zC)) with z = unary cube root
for (int k = 0; k < 3; k++) {
Expression * ccopy = c;
Expression * delta0copy = delta0;
if (k < 2) {
ccopy = new Multiplication(c->clone(), unary3roots[k], false);
delta0copy = delta0->clone();
}
Expression * add3Operands[3] = {b->clone(), ccopy, new Division(delta0copy, ccopy->clone(), false)};
m_exactSolutions[k] = new Multiplication(new Division(new Rational(-1), new Multiplication(new Rational(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false);
}
m_numberOfSolutions = 3;
}
m_exactSolutions[m_numberOfSolutions] = delta;
}
#endif
}
void EquationStore::tidySolution() {
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
if (m_exactSolutionExactLayouts[i]) {
delete m_exactSolutionExactLayouts[i];
m_exactSolutionExactLayouts[i] = nullptr;
}
if (m_exactSolutionApproximateLayouts[i]) {
delete m_exactSolutionApproximateLayouts[i];
m_exactSolutionApproximateLayouts[i] = nullptr;
}
}
}
}