Files
Upsilon/apps/regression/store.cpp
Émilie Feral ca1b61c97a [apps] Avoid switch() {} when possible.
Change-Id: I4e050dcb761fe5ca6a12af375537f3554f324f68
2017-01-15 20:04:59 +01:00

244 lines
6.5 KiB
C++

#include "store.h"
#include <assert.h>
#include <float.h>
#include <math.h>
#include <string.h>
namespace Regression {
Store::Store() :
InteractiveCurveViewRange(nullptr, this),
FloatPairStore()
{
}
bool Store::didChangeRange(InteractiveCurveViewRange * interactiveCurveViewRange) {
if (!m_yAuto) {
return false;
}
float min = m_yMin;
float max = m_yMax;
for (int k = 0; k < m_numberOfPairs; k++) {
if (m_xMin <= m_data[0][k] && m_data[0][k] <= m_xMax) {
if (m_data[1][k] < min) {
min = m_data[1][k];
}
if (m_data[1][k] > max) {
max = m_data[1][k];
}
}
}
if (min == m_yMin && max == m_yMax) {
return false;
}
m_yMin = min;
m_yMax = max;
m_yGridUnit = computeGridUnit(Axis::Y, m_yMin, m_yMax);
return true;
}
/* Dots */
int Store::closestVerticalDot(int direction, float x) {
float nextX = INFINITY;
float nextY = INFINITY;
int selectedDot = -1;
/* The conditions to test on all dots are in this order:
* - the next dot should be within the window abscissa bounds
* - the next dot is the closest one in abscissa to x
* - the next dot is above the regression curve if direction == 1 and below
* otherwise */
for (int index = 0; index < m_numberOfPairs; index++) {
if ((m_xMin <= m_data[0][index] && m_data[0][index] <= m_xMax) &&
(fabsf(m_data[0][index] - x) < fabsf(nextX - x)) &&
((m_data[1][index] - yValueForXValue(m_data[0][index]) >= 0) == (direction > 0))) {
// Handle edge case: if 2 dots have the same abscissa but different ordinates
if (nextX != m_data[0][index] || ((nextY - m_data[1][index] >= 0) == (direction > 0))) {
nextX = m_data[0][index];
nextY = m_data[1][index];
selectedDot = index;
}
}
}
// Compare with the mean dot
if (m_xMin <= meanOfColumn(0) && meanOfColumn(0) <= m_xMax &&
(fabsf(meanOfColumn(0) - x) < fabsf(nextX - x)) &&
((meanOfColumn(1) - yValueForXValue(meanOfColumn(0)) >= 0) == (direction > 0))) {
if (nextX != meanOfColumn(0) || ((nextY - meanOfColumn(1) >= 0) == (direction > 0))) {
nextX = meanOfColumn(0);
nextY = meanOfColumn(1);
selectedDot = m_numberOfPairs;
}
}
return selectedDot;
}
int Store::nextDot(int direction, int dot) {
float nextX = INFINITY;
float nextY = INFINITY;
int selectedDot = -1;
float x = meanOfColumn(0);
if (dot >= 0 && dot < m_numberOfPairs) {
x = get(0, dot);
}
/* We have to scan the Store in opposite ways for the 2 directions to ensure to
* select all dots (even with equal abscissa) */
if (direction > 0) {
for (int index = 0; index < m_numberOfPairs; index++) {
/* The conditions to test are in this order:
* - the next dot is the closest one in abscissa to x
* - the next dot is not the same as the selected one
* - the next dot is at the right of the selected one */
if (fabsf(m_data[0][index] - x) < fabsf(nextX - x) &&
(index != dot) &&
(m_data[0][index] >= x)) {
// Handle edge case: 2 dots have same abscissa
if (m_data[0][index] != x || (index > dot)) {
nextX = m_data[0][index];
nextY = m_data[1][index];
selectedDot = index;
}
}
}
// Compare with the mean dot
if (fabsf(meanOfColumn(0) - x) < fabsf(nextX - x) &&
(m_numberOfPairs != dot) &&
(meanOfColumn(0) >= x)) {
if (meanOfColumn(0) != x || (x > dot)) {
nextX = meanOfColumn(0);
nextY = meanOfColumn(1);
selectedDot = m_numberOfPairs;
}
}
} else {
// Compare with the mean dot
if (fabsf(meanOfColumn(0) - x) < fabsf(nextX - x) &&
(m_numberOfPairs != dot) &&
(meanOfColumn(0) <= x)) {
if (meanOfColumn(0) != x || (m_numberOfPairs < dot)) {
nextX = meanOfColumn(0);
nextY = meanOfColumn(1);
selectedDot = m_numberOfPairs;
}
}
for (int index = m_numberOfPairs-1; index >= 0; index--) {
if (fabsf(m_data[0][index] - x) < fabsf(nextX - x) &&
(index != dot) &&
(m_data[0][index] <= x)) {
// Handle edge case: 2 dots have same abscissa
if (m_data[0][index] != x || (index < dot)) {
nextX = m_data[0][index];
nextY = m_data[1][index];
selectedDot = index;
}
}
}
}
return selectedDot;
}
/* Window */
void Store::setDefault() {
m_xMin = minValueOfColumn(0);
m_xMax = maxValueOfColumn(0);
m_yMin = minValueOfColumn(1);
m_yMax = maxValueOfColumn(1);
if (m_xMin == m_xMax) {;
m_xMin = m_xMin - 1.0f;
m_xMax = m_xMax + 1.0f;
}
if (m_yMin == m_yMax) {
m_yMin = m_yMin - 1.0f;
m_yMax = m_yMax + 1.0f;
}
m_xGridUnit = computeGridUnit(Axis::X, m_xMin, m_xMax);
m_yGridUnit = computeGridUnit(Axis::Y, m_yMin, m_yMax);
}
/* Calculations */
float Store::numberOfPairs() {
return m_numberOfPairs;
}
float Store::maxValueOfColumn(int i) {
float max = -FLT_MAX;
for (int k = 0; k < m_numberOfPairs; k++) {
if (m_data[i][k] > max) {
max = m_data[i][k];
}
}
return max;
}
float Store::minValueOfColumn(int i) {
float min = FLT_MAX;
for (int k = 0; k < m_numberOfPairs; k++) {
if (m_data[i][k] < min) {
min = m_data[i][k];
}
}
return min;
}
float Store::squaredValueSumOfColumn(int i) {
float result = 0;
for (int k = 0; k < m_numberOfPairs; k++) {
result += m_data[i][k]*m_data[i][k];
}
return result;
}
float Store::columnProductSum() {
float result = 0;
for (int k = 0; k < m_numberOfPairs; k++) {
result += m_data[0][k]*m_data[1][k];
}
return result;
}
float Store::meanOfColumn(int i) {
return sumOfColumn(i)/m_numberOfPairs;
}
float Store::varianceOfColumn(int i) {
float mean = meanOfColumn(i);
return squaredValueSumOfColumn(i)/m_numberOfPairs - mean*mean;
}
float Store::standardDeviationOfColumn(int i) {
return sqrtf(varianceOfColumn(i));
}
float Store::covariance() {
return columnProductSum()/m_numberOfPairs - meanOfColumn(0)*meanOfColumn(1);
}
float Store::slope() {
return covariance()/varianceOfColumn(0);
}
float Store::yIntercept() {
return meanOfColumn(1) - slope()*meanOfColumn(0);
}
float Store::yValueForXValue(float x) {
return slope()*x+yIntercept();
}
float Store::xValueForYValue(float y) {
return (y - yIntercept())/slope();
}
float Store::correlationCoefficient() {
return covariance()/(standardDeviationOfColumn(0)*standardDeviationOfColumn(1));
}
float Store::squaredCorrelationCoefficient() {
float cov = covariance();
return cov*cov/(varianceOfColumn(0)*varianceOfColumn(1));
}
}