Files
Upsilon/apps/calculation/calculation.cpp
2018-05-15 11:33:28 +02:00

215 lines
6.8 KiB
C++

#include "calculation.h"
#include "calculation_store.h"
#include <string.h>
#include <cmath>
using namespace Poincare;
namespace Calculation {
Calculation::Calculation() :
m_inputText(),
m_exactOutputText(),
m_approximateOutputText(),
m_input(nullptr),
m_inputLayout(nullptr),
m_exactOutput(nullptr),
m_exactOutputLayout(nullptr),
m_approximateOutput(nullptr),
m_approximateOutputLayout(nullptr),
m_equalSign(EqualSign::Unknown)
{
}
Calculation::~Calculation() {
if (m_inputLayout != nullptr) {
delete m_inputLayout;
m_inputLayout = nullptr;
}
if (m_input != nullptr) {
delete m_input;
m_input = nullptr;
}
if (m_exactOutput != nullptr) {
delete m_exactOutput;
m_exactOutput = nullptr;
}
if (m_exactOutputLayout != nullptr) {
delete m_exactOutputLayout;
m_exactOutputLayout = nullptr;
}
if (m_approximateOutput != nullptr) {
delete m_approximateOutput;
m_approximateOutput = nullptr;
}
if (m_approximateOutputLayout != nullptr) {
delete m_approximateOutputLayout;
m_approximateOutputLayout = nullptr;
}
}
Calculation& Calculation::operator=(const Calculation& other) {
const char * otherInputText = other.m_inputText;
const char * otherExactOutputText = other.m_exactOutputText;
const char * otherApproximateOutputText = other.m_approximateOutputText;
reset();
strlcpy(m_inputText, otherInputText, sizeof(m_inputText));
strlcpy(m_exactOutputText, otherExactOutputText, sizeof(m_exactOutputText));
strlcpy(m_approximateOutputText, otherApproximateOutputText, sizeof(m_approximateOutputText));
return *this;
}
void Calculation::reset() {
m_inputText[0] = 0;
m_exactOutputText[0] = 0;
m_approximateOutputText[0] = 0;
tidy();
}
void Calculation::setContent(const char * c, Context * context, Expression * ansExpression) {
reset();
m_input = Expression::parse(c);
Expression::ReplaceSymbolWithExpression(&m_input, Symbol::SpecialSymbols::Ans, ansExpression);
/* We do not store directly the text enter by the user because we do not want
* to keep Ans symbol in the calculation store. */
m_input->writeTextInBuffer(m_inputText, sizeof(m_inputText));
m_exactOutput = Expression::ParseAndSimplify(m_inputText, *context);
m_exactOutput->writeTextInBuffer(m_exactOutputText, sizeof(m_exactOutputText));
m_approximateOutput = m_exactOutput->approximate<double>(*context);
m_approximateOutput->writeTextInBuffer(m_approximateOutputText, sizeof(m_approximateOutputText));
}
const char * Calculation::inputText() {
return m_inputText;
}
const char * Calculation::exactOutputText() {
return m_exactOutputText;
}
const char * Calculation::approximateOutputText() {
return m_approximateOutputText;
}
Expression * Calculation::input() {
if (m_input == nullptr) {
m_input = Expression::parse(m_inputText);
}
return m_input;
}
ExpressionLayout * Calculation::inputLayout() {
if (m_inputLayout == nullptr && input() != nullptr) {
m_inputLayout = input()->createLayout(PrintFloat::Mode::Decimal, Expression::ComplexFormat::Cartesian);
}
return m_inputLayout;
}
bool Calculation::isEmpty() {
/* To test if a calculation is empty, we need to test either m_inputText or
* m_exactOutputText or m_approximateOutputText, the only three fields that
* are not lazy-loaded. We choose m_exactOutputText to consider that a
* calculation being added is still empty until the end of the method
* 'setContent'. Indeed, during 'setContent' method, 'ans' evaluation calls
* the evaluation of the last calculation only if the calculation being
* filled is not taken into account.*/
if (strlen(m_approximateOutputText) == 0) {
return true;
}
return false;
}
void Calculation::tidy() {
if (m_input != nullptr) {
delete m_input;
}
m_input = nullptr;
if (m_inputLayout != nullptr) {
delete m_inputLayout;
}
m_inputLayout = nullptr;
if (m_exactOutput != nullptr) {
delete m_exactOutput;
}
m_exactOutput = nullptr;
if (m_exactOutputLayout != nullptr) {
delete m_exactOutputLayout;
}
m_exactOutputLayout = nullptr;
if (m_approximateOutput != nullptr) {
delete m_approximateOutput;
}
m_approximateOutput = nullptr;
if (m_approximateOutputLayout != nullptr) {
delete m_approximateOutputLayout;
}
m_approximateOutputLayout = nullptr;
m_equalSign = EqualSign::Unknown;
}
Expression * Calculation::exactOutput(Context * context) {
if (m_exactOutput == nullptr) {
/* To ensure that the expression 'm_exactOutput' is a simplified, we
* call 'ParseAndSimplify'. */
m_exactOutput = Expression::ParseAndSimplify(m_exactOutputText, *context);
}
return m_exactOutput;
}
ExpressionLayout * Calculation::exactOutputLayout(Context * context) {
if (m_exactOutputLayout == nullptr && exactOutput(context) != nullptr) {
m_exactOutputLayout = exactOutput(context)->createLayout();
}
return m_exactOutputLayout;
}
Expression * Calculation::approximateOutput(Context * context) {
if (m_approximateOutput == nullptr) {
/* To ensure that the expression 'm_output' is a matrix or a complex, we
* call 'evaluate'. */
Expression * exp = Expression::parse(m_approximateOutputText);
if (exp != nullptr) {
m_approximateOutput = exp->approximate<double>(*context);
delete exp;
} else {
m_approximateOutput = new Complex<double>(Complex<double>::Float(NAN));
}
}
return m_approximateOutput;
}
ExpressionLayout * Calculation::approximateOutputLayout(Context * context) {
if (m_approximateOutputLayout == nullptr && approximateOutput(context) != nullptr) {
m_approximateOutputLayout = approximateOutput(context)->createLayout();
}
return m_approximateOutputLayout;
}
bool Calculation::shouldOnlyDisplayApproximateOutput(Context * context) {
if (strcmp(m_exactOutputText, m_approximateOutputText) == 0) {
return true;
}
if (strcmp(m_exactOutputText, "undef") == 0) {
return true;
}
return input()->isApproximate(*context);
}
Calculation::EqualSign Calculation::exactAndApproximateDisplayedOutputsAreEqual(Poincare::Context * context) {
if (m_equalSign != EqualSign::Unknown) {
return m_equalSign;
}
char buffer[k_printedExpressionSize];
approximateOutput(context)->writeTextInBuffer(buffer, k_printedExpressionSize, Preferences::sharedPreferences()->numberOfSignificantDigits());
/* Warning: we cannot use directly the m_approximateOutputText but we have to
* re-serialize the approximateOutput because the number of stored
* significative numbers and the number of displayed significative numbers
* are not identical. (For example, 0.000025 might be displayed "0.00003"
* which requires in an approximative equal) */
Expression * approximateOutput = Expression::ParseAndSimplify(buffer, *context);
m_equalSign = approximateOutput->isIdenticalTo(exactOutput(context)) ? EqualSign::Equal : EqualSign::Approximation;
delete approximateOutput;
return m_equalSign;
}
}