mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
260 lines
7.0 KiB
C++
260 lines
7.0 KiB
C++
#include "store.h"
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <cmath>
|
|
#include <string.h>
|
|
#include <ion.h>
|
|
|
|
using namespace Shared;
|
|
|
|
namespace Statistics {
|
|
|
|
Store::Store() :
|
|
MemoizedCurveViewRange(),
|
|
FloatPairStore(),
|
|
m_barWidth(1.0),
|
|
m_firstDrawnBarAbscissa(0.0)
|
|
{
|
|
}
|
|
|
|
uint32_t Store::barChecksum() {
|
|
double data[2] = {m_barWidth, m_firstDrawnBarAbscissa};
|
|
size_t dataLengthInBytes = 2*sizeof(double);
|
|
assert((dataLengthInBytes & 0x3) == 0); // Assert that dataLengthInBytes is a multiple of 4
|
|
return Ion::crc32((uint32_t *)data, dataLengthInBytes/sizeof(uint32_t));
|
|
}
|
|
|
|
/* Histogram bars */
|
|
|
|
void Store::setBarWidth(double barWidth) {
|
|
if (barWidth > 0.0) {
|
|
m_barWidth = barWidth;
|
|
}
|
|
}
|
|
|
|
double Store::heightOfBarAtIndex(int series, int index) {
|
|
return sumOfValuesBetween(series, startOfBarAtIndex(series, index), endOfBarAtIndex(series, index));
|
|
}
|
|
|
|
double Store::heightOfBarAtValue(int series, double value) {
|
|
double width = barWidth();
|
|
int barNumber = std::floor((value - m_firstDrawnBarAbscissa)/width);
|
|
double lowerBound = m_firstDrawnBarAbscissa + barNumber*width;
|
|
double upperBound = m_firstDrawnBarAbscissa + (barNumber+1)*width;
|
|
return sumOfValuesBetween(series, lowerBound, upperBound);
|
|
}
|
|
|
|
double Store::startOfBarAtIndex(int series, int index) {
|
|
double firstBarAbscissa = m_firstDrawnBarAbscissa + m_barWidth*std::floor((minValue(series)- m_firstDrawnBarAbscissa)/m_barWidth);
|
|
return firstBarAbscissa + index * m_barWidth;
|
|
}
|
|
|
|
double Store::endOfBarAtIndex(int series, int index) {
|
|
return startOfBarAtIndex(series, index+1);
|
|
}
|
|
|
|
double Store::numberOfBars(int series) {
|
|
double firstBarAbscissa = m_firstDrawnBarAbscissa + m_barWidth*std::floor((minValue(series)- m_firstDrawnBarAbscissa)/m_barWidth);
|
|
return std::ceil((maxValue(series) - firstBarAbscissa)/m_barWidth)+1;
|
|
}
|
|
|
|
bool Store::scrollToSelectedBarIndex(int series, int index) {
|
|
float startSelectedBar = startOfBarAtIndex(series, index);
|
|
float windowRange = m_xMax - m_xMin;
|
|
float range = windowRange/(1+k_displayLeftMarginRatio+k_displayRightMarginRatio);
|
|
if (m_xMin + k_displayLeftMarginRatio*range > startSelectedBar) {
|
|
m_xMin = startSelectedBar - k_displayLeftMarginRatio*range;
|
|
m_xMax = m_xMin + windowRange;
|
|
return true;
|
|
}
|
|
float endSelectedBar = endOfBarAtIndex(series, index);
|
|
if (endSelectedBar > m_xMax - k_displayRightMarginRatio*range) {
|
|
m_xMax = endSelectedBar + k_displayRightMarginRatio*range;
|
|
m_xMin = m_xMax - windowRange;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Store::isEmpty() {
|
|
for (int i = 0; i < k_numberOfSeries; i ++) {
|
|
if (!seriesIsEmpty(i)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int Store::numberOfNonEmptySeries() {
|
|
int result = 0;
|
|
for (int i = 0; i < k_numberOfSeries; i ++) {
|
|
if (!seriesIsEmpty(i)) {
|
|
result++;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Store::seriesIsEmpty(int i) {
|
|
return sumOfOccurrences(i) == 0;
|
|
}
|
|
|
|
|
|
/* Calculation */
|
|
|
|
double Store::sumOfOccurrences(int series) {
|
|
return sumOfColumn(series, 1);
|
|
}
|
|
|
|
double Store::maxValueForAllSeries() {
|
|
assert(FloatPairStore::k_numberOfSeries > 0);
|
|
double result = maxValue(0);
|
|
for (int i = 1; i < FloatPairStore::k_numberOfSeries; i++) {
|
|
double maxCurrentSeries = maxValue(i);
|
|
if (result < maxCurrentSeries) {
|
|
result = maxCurrentSeries;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double Store::minValueForAllSeries() {
|
|
assert(FloatPairStore::k_numberOfSeries > 0);
|
|
double result = minValue(0);
|
|
for (int i = 1; i < FloatPairStore::k_numberOfSeries; i++) {
|
|
double minCurrentSeries = minValue(i);
|
|
if (result > minCurrentSeries) {
|
|
result = minCurrentSeries;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double Store::maxValue(int series) {
|
|
double max = -DBL_MAX;
|
|
for (int k = 0; k < m_numberOfPairs[series]; k++) {
|
|
if (m_data[series][0][k] > max && m_data[series][1][k] > 0) {
|
|
max = m_data[series][0][k];
|
|
}
|
|
}
|
|
return max;
|
|
}
|
|
|
|
double Store::minValue(int series) {
|
|
double min = DBL_MAX;
|
|
for (int k = 0; k < m_numberOfPairs[series]; k++) {
|
|
if (m_data[series][0][k] < min && m_data[series][1][k] > 0) {
|
|
min = m_data[series][0][k];
|
|
}
|
|
}
|
|
return min;
|
|
}
|
|
|
|
double Store::range(int series) {
|
|
return maxValue(series)-minValue(series);
|
|
}
|
|
|
|
double Store::mean(int series) {
|
|
return sum(series)/sumOfOccurrences(series);
|
|
}
|
|
|
|
double Store::variance(int series) {
|
|
double m = mean(series);
|
|
return squaredValueSum(series)/sumOfOccurrences(series) - m*m;
|
|
}
|
|
|
|
double Store::standardDeviation(int series) {
|
|
return std::sqrt(variance(series));
|
|
}
|
|
|
|
double Store::sampleStandardDeviation(int series) {
|
|
double n = sumOfOccurrences(series);
|
|
double s = std::sqrt(n/(n-1.0));
|
|
return s*standardDeviation(series);
|
|
}
|
|
|
|
double Store::firstQuartile(int series) {
|
|
int firstQuartileIndex = std::ceil(sumOfOccurrences(series)/4);
|
|
return sortedElementNumber(series, firstQuartileIndex);
|
|
}
|
|
|
|
double Store::thirdQuartile(int series) {
|
|
int thirdQuartileIndex = std::ceil(3*sumOfOccurrences(series)/4);
|
|
return sortedElementNumber(series, thirdQuartileIndex);
|
|
}
|
|
|
|
double Store::quartileRange(int series) {
|
|
return thirdQuartile(series)-firstQuartile(series);
|
|
}
|
|
|
|
double Store::median(int series) {
|
|
int total = sumOfOccurrences(series);
|
|
int halfTotal = total/2;
|
|
int totalMod2 = total - 2*halfTotal;
|
|
if (totalMod2 == 0) {
|
|
double minusMedian = sortedElementNumber(series, halfTotal);
|
|
double maxMedian = sortedElementNumber(series, halfTotal+1);
|
|
return (minusMedian+maxMedian)/2.0;
|
|
} else {
|
|
return sortedElementNumber(series, halfTotal+1);
|
|
}
|
|
}
|
|
|
|
double Store::sum(int series) {
|
|
double result = 0;
|
|
for (int k = 0; k < m_numberOfPairs[series]; k++) {
|
|
result += m_data[series][0][k]*m_data[series][1][k];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double Store::squaredValueSum(int series) {
|
|
double result = 0;
|
|
for (int k = 0; k < m_numberOfPairs[series]; k++) {
|
|
result += m_data[series][0][k]*m_data[series][0][k]*m_data[series][1][k];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Private methods */
|
|
|
|
double Store::defaultValue(int series, int i, int j) {
|
|
return i == 0 ? FloatPairStore::defaultValue(series, i, j) : 1.0;
|
|
}
|
|
|
|
double Store::sumOfValuesBetween(int series, double x1, double x2) {
|
|
double result = 0;
|
|
for (int k = 0; k < m_numberOfPairs[series]; k++) {
|
|
if (m_data[series][0][k] < x2 && x1 <= m_data[series][0][k]) {
|
|
result += m_data[series][1][k];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double Store::sortedElementNumber(int series, int k) {
|
|
// TODO: use an other algorithm (ex quickselect) to avoid quadratic complexity
|
|
double bufferValues[m_numberOfPairs[series]];
|
|
memcpy(bufferValues, m_data[series][0], m_numberOfPairs[series]*sizeof(double));
|
|
int sortedElementIndex = 0;
|
|
double cumulatedSize = 0.0;
|
|
while (cumulatedSize < k) {
|
|
sortedElementIndex = minIndex(bufferValues, m_numberOfPairs[series]);
|
|
bufferValues[sortedElementIndex] = DBL_MAX;
|
|
cumulatedSize += m_data[series][1][sortedElementIndex];
|
|
}
|
|
return m_data[series][0][sortedElementIndex];
|
|
}
|
|
|
|
int Store::minIndex(double * bufferValues, int bufferLength) {
|
|
int index = 0;
|
|
for (int i = 1; i < bufferLength; i++) {
|
|
if (bufferValues[index] > bufferValues[i]) {
|
|
index = i;
|
|
}
|
|
}
|
|
return index;
|
|
}
|
|
|
|
}
|