mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
270 lines
14 KiB
C++
270 lines
14 KiB
C++
#include <quiz.h>
|
||
#include <apps/shared/global_context.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <limits.h>
|
||
#include <cmath>
|
||
#include "../equation_store.h"
|
||
#include "../../../poincare/test/helper.h"
|
||
|
||
using namespace Poincare;
|
||
|
||
namespace Solver {
|
||
|
||
void addEquationWithText(EquationStore * equationStore, const char * text) {
|
||
Ion::Storage::Record::ErrorStatus err = equationStore->addEmptyModel();
|
||
assert(err == Ion::Storage::Record::ErrorStatus::None);
|
||
(void) err; // Silence warning in DEBUG=0
|
||
Ion::Storage::Record record = equationStore->recordAtIndex(equationStore->numberOfModels()-1);
|
||
Shared::ExpiringPointer<Equation> model = equationStore->modelForRecord(record);
|
||
model->setContent(text);
|
||
}
|
||
|
||
void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables[], const char * solutions[], int numberOfSolutions) {
|
||
Shared::GlobalContext globalContext;
|
||
EquationStore equationStore;
|
||
int index = 0;
|
||
while (equations[index] != 0) {
|
||
addEquationWithText(&equationStore, equations[index++]);
|
||
}
|
||
EquationStore::Error err = equationStore.exactSolve(&globalContext);
|
||
quiz_assert(err == error);
|
||
if (err != EquationStore::Error::NoError) {
|
||
equationStore.removeAll();
|
||
return;
|
||
}
|
||
quiz_assert(equationStore.type() == type);
|
||
quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions);
|
||
if (numberOfSolutions == INT_MAX) {
|
||
equationStore.removeAll();
|
||
return;
|
||
}
|
||
if (type == EquationStore::Type::LinearSystem) {
|
||
for (int i = 0; i < numberOfSolutions; i++) {
|
||
quiz_assert(strcmpWithSystemParentheses(equationStore.variableAtIndex(i),variables[i]) == 0);
|
||
}
|
||
} else {
|
||
quiz_assert(strcmpWithSystemParentheses(equationStore.variableAtIndex(0), variables[0]) == 0);
|
||
}
|
||
constexpr int bufferSize = 200;
|
||
char buffer[bufferSize];
|
||
for (int i = 0; i < numberOfSolutions; i++) {
|
||
equationStore.exactSolutionLayoutAtIndex(i, true).serializeForParsing(buffer, bufferSize);
|
||
quiz_assert(strcmpWithSystemParentheses(buffer, solutions[i]) == 0);
|
||
}
|
||
equationStore.removeAll();
|
||
}
|
||
|
||
void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char * variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) {
|
||
Shared::GlobalContext globalContext;
|
||
EquationStore equationStore;
|
||
addEquationWithText(&equationStore, equations);
|
||
EquationStore::Error err = equationStore.exactSolve(&globalContext);
|
||
quiz_assert(err == EquationStore::Error::RequireApproximateSolution);
|
||
equationStore.setIntervalBound(0, xMin);
|
||
equationStore.setIntervalBound(1, xMax);
|
||
equationStore.approximateSolve(&globalContext);
|
||
quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions);
|
||
quiz_assert(strcmp(equationStore.variableAtIndex(0), variable)== 0);
|
||
for (int i = 0; i < numberOfSolutions; i++) {
|
||
quiz_assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5);
|
||
}
|
||
quiz_assert(equationStore.haveMoreApproximationSolutions(&globalContext) == hasMoreSolutions);
|
||
equationStore.removeAll();
|
||
}
|
||
|
||
QUIZ_CASE(equation_solve) {
|
||
// x+y+z+a+b+c+d = 0
|
||
const char * variables1[] = {""};
|
||
const char * equations0[] = {"x+y+z+a+b+c+d=0", 0};
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// x^2+y = 0
|
||
const char * equations1[] = {"x^2+y=0", 0};
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// cos(x) = 0
|
||
const char * equations2[] = {"cos(x)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// 2 = 0
|
||
const char * equations3[] = {"2=0", 0};
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
// 0 = 0
|
||
const char * equations4[] = {"0=0", 0};
|
||
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX);
|
||
|
||
// x-x+2 = 0
|
||
const char * equations5[] = {"x-x+2=0", 0};
|
||
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// x-x= 0
|
||
const char * equations6[] = {"x-x=0", 0};
|
||
assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX);
|
||
|
||
const char * variablesx[] = {"x", ""};
|
||
// 2x+3=4
|
||
const char * equations7[] = {"2x+3=4", 0};
|
||
const char * solutions7[] = {"(1)/(2)"};
|
||
assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions7, 1);
|
||
|
||
// 3x^2-4x+4=2
|
||
const char * equations8[] = {"3×x^2-4x+4=2", 0};
|
||
const char * solutions8[] = {"(2)/(3)-(√(2))/(3)×𝐢","(2)/(3)+(√(2))/(3)×𝐢", "-8"};
|
||
assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions8, 3);
|
||
|
||
// 2×x^2-4×x+4=3
|
||
const char * equations9[] = {"2×x^2-4×x+4=3", 0};
|
||
const char * solutions9[] = {"(-√(2)+2)/(2)","(√(2)+2)/(2)", "8"};
|
||
assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions9, 3);
|
||
|
||
// 2×x^2-4×x+2=0
|
||
const char * equations10[] = {"2×x^2-4×x+2=0", 0};
|
||
const char * solutions10[] = {"1", "0"};
|
||
assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions10, 2);
|
||
|
||
quiz_assert(UCodePointLeftSystemParenthesis == '\022');
|
||
quiz_assert(UCodePointLeftSystemParenthesis == '\x12');
|
||
quiz_assert(UCodePointRightSystemParenthesis == '\023');
|
||
quiz_assert(UCodePointRightSystemParenthesis == '\x13');
|
||
|
||
// x^2+x+1=3×x^2+pi×x-√(5)
|
||
const char * equations11[] = {"x^2+x+1=3×x^2+π×x-√(5)", 0};
|
||
const char * solutions11[] = {"(√(π^\0222\023-2×π+8×√(5)+9)-π+1)/(4)", "(-√(π^\0222\023-2×π+8×√(5)+9)-π+1)/(4)", "π^\0222\023-2×π+8×√(5)+9"};
|
||
assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions11, 3);
|
||
|
||
// TODO
|
||
// x^3 - 4x^2 + 6x - 24 = 0
|
||
//const char * equations10[] = {"2×x^2-4×x+4=3", 0};
|
||
//assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, {"4", "𝐢×√(6)", "-𝐢×√(6)", "-11616"}, 4);
|
||
|
||
//x^3+x^2+1=0
|
||
// x^3-3x-2=0
|
||
|
||
// Linear System
|
||
const char * equations12[] = {"x+y=0", 0};
|
||
assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, INT_MAX);
|
||
|
||
const char * variablesxy[] = {"x", "y", ""};
|
||
|
||
const char * equations13[] = {"x+y=0", "3x+y=-5", 0};
|
||
const char * solutions13[] = {"-(5)/(2)", "(5)/(2)"};
|
||
assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxy, solutions13, 2);
|
||
|
||
const char * variablesxyz[] = {"x", "y", "z", ""};
|
||
|
||
const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-π=0", 0};
|
||
const char * solutions14[] = {"(-π-20)/(8)", "(π+20)/(8)", "(π)/(4)"};
|
||
assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyz, solutions14, 3);
|
||
|
||
// Monovariable non-polynomial equation
|
||
double solutions15[] = {-90.0, 90.0};
|
||
assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, "x", solutions15, 2, false);
|
||
|
||
double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0};
|
||
assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, "x", solutions16, 10, true);
|
||
|
||
double solutions17[] = {0};
|
||
assert_equation_approximate_solve_to("√(y)=0", -900.0, 1000.0, "y", solutions17, 1, false);
|
||
|
||
// Long variable names
|
||
const char * variablesabcde[] = {"abcde", ""};
|
||
const char * equations18[] = {"2abcde+3=4", 0};
|
||
const char * solutions18[] = {"(1)/(2)"};
|
||
assert_equation_system_exact_solve_to(equations18, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesabcde, solutions18, 1);
|
||
|
||
const char * variablesBig1Big2[] = {"Big1", "Big2", ""};
|
||
const char * equations19[] = {"Big1+Big2=0", "3Big1+Big2=-5", 0};
|
||
const char * solutions19[] = {"-(5)/(2)", "(5)/(2)"};
|
||
assert_equation_system_exact_solve_to(equations19, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesBig1Big2, solutions19, 2);
|
||
|
||
// conj(x)*x+1 = 0
|
||
const char * equations20one = "conj(x)*x+1=0";
|
||
const char * equations20[] = {equations20one, 0};
|
||
assert_equation_system_exact_solve_to(equations20, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
assert_equation_approximate_solve_to(equations20one, -100.0, 100.0, "x", nullptr, 0, false);
|
||
}
|
||
|
||
QUIZ_CASE(equation_solve_complex_format) {
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real);
|
||
const char * variablesx[] = {"x", ""};
|
||
// x+I = 0 --> x = -𝐢
|
||
const char * equations0[] = {"x+𝐢=0", 0};
|
||
const char * solutions0[] = {"-𝐢"};
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
|
||
|
||
// x+√(-1) = 0 --> Not defined in R
|
||
const char * equations1[] = {"x+√(-1)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0);
|
||
|
||
// x^2+x+1=0 --> No solution in R
|
||
const char * equations2[] = {"x^2+x+1=0", 0};
|
||
const char * delta2[] = {"-3"};
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, delta2, 1);
|
||
|
||
// x^2-√(-1)=0 --> Not defined in R
|
||
const char * equations3[] = {"x^2-√(-1)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::EquationUnreal, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, nullptr, 0);
|
||
|
||
// x+√(-1)×√(-1) = 0 --> Not defined in R
|
||
const char * equations4[] = {"x+√(-1)×√(-1)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0);
|
||
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian);
|
||
// x+𝐢 = 0 --> x = -𝐢
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
|
||
|
||
// x+√(-1) = 0 --> x = -𝐢
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
|
||
|
||
// x^2+x+1=0
|
||
const char * solutions2[] = {"-(1)/(2)-(√(3))/(2)×𝐢","-(1)/(2)+(√(3))/(2)×𝐢", "-3"};
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2, 3);
|
||
|
||
// x^2-√(-1)=0
|
||
const char * solutions3[] = {"-(√(2))/(2)-(√(2))/(2)×𝐢", "(√(2))/(2)+(√(2))/(2)×𝐢","4×𝐢"};
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3, 3);
|
||
|
||
// x+√(-1)×√(-1) = 0
|
||
const char * solutions4[] = {"1"};
|
||
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions4, 1);
|
||
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar);
|
||
// x+𝐢 = 0 --> x = e^(-π/2×i)
|
||
const char * solutions0Polar[] = {"ℯ^\x12-(π)/(2)×𝐢\x13"};
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1);
|
||
|
||
// x+√(-1) = 0 --> x = e^(-π/2×𝐢)
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1);
|
||
|
||
// x^2+x+1=0
|
||
const char * solutions2Polar[] = {"ℯ^\x12-(2×π)/(3)×𝐢\x13","ℯ^\x12(2×π)/(3)×𝐢\x13", "3×ℯ^\x12π×𝐢\x13"};
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2Polar, 3);
|
||
|
||
// x^2-√(-1)=0
|
||
const char * solutions3Polar[] = {"ℯ^\x12-(3×π)/(4)×𝐢\x13", "ℯ^\x12(π)/(4)×𝐢\x13", "4×ℯ^\x12(π)/(2)×𝐢\x13"};
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3Polar, 3);
|
||
|
||
}
|
||
|
||
QUIZ_CASE(equation_and_symbolic_computation) {
|
||
|
||
// x+a=0 : non linear system
|
||
const char * equation[] = {"x+a=0", 0};
|
||
assert_equation_system_exact_solve_to(equation, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, nullptr, nullptr, INT_MAX);
|
||
|
||
// -3->a
|
||
Shared::GlobalContext globalContext;
|
||
Expression::ParseAndSimplify("-3→a", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
|
||
// x+a = 0 : x = 3
|
||
const char * variables[] = {"x", ""};
|
||
const char * solutions[] = {"3"};
|
||
assert_equation_system_exact_solve_to(equation, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables, solutions, 1);
|
||
|
||
// Clean the storage
|
||
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
|
||
}
|
||
|
||
}
|