mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
389 lines
24 KiB
C++
389 lines
24 KiB
C++
#include <quiz.h>
|
||
#include <apps/shared/global_context.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <limits.h>
|
||
#include <cmath>
|
||
#include "../equation_store.h"
|
||
#include "../../../poincare/test/helper.h"
|
||
|
||
using namespace Poincare;
|
||
|
||
namespace Solver {
|
||
|
||
void addEquationWithText(EquationStore * equationStore, const char * text, Context * context) {
|
||
Ion::Storage::Record::ErrorStatus err = equationStore->addEmptyModel();
|
||
quiz_assert_print_if_failure(err == Ion::Storage::Record::ErrorStatus::None, text);
|
||
(void) err; // Silence warning in DEBUG=0
|
||
Ion::Storage::Record record = equationStore->recordAtIndex(equationStore->numberOfModels()-1);
|
||
Shared::ExpiringPointer<Equation> model = equationStore->modelForRecord(record);
|
||
model->setContent(text, context);
|
||
}
|
||
|
||
void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables[], const char * solutions[], int numberOfSolutions, bool didReplaceFunctionsButNotSymbols = false) {
|
||
Shared::GlobalContext globalContext;
|
||
EquationStore equationStore;
|
||
int index = 0;
|
||
while (equations[index] != 0) {
|
||
addEquationWithText(&equationStore, equations[index++], &globalContext);
|
||
}
|
||
bool replaceFunctionsButNotSymbols = false;
|
||
EquationStore::Error err = equationStore.exactSolve(&globalContext, &replaceFunctionsButNotSymbols);
|
||
quiz_assert_print_if_failure(err == error, equations[0]);
|
||
quiz_assert_print_if_failure(replaceFunctionsButNotSymbols == didReplaceFunctionsButNotSymbols, equations[0]);
|
||
if (err != EquationStore::Error::NoError) {
|
||
equationStore.removeAll();
|
||
return;
|
||
}
|
||
quiz_assert_print_if_failure(equationStore.type() == type, equations[0]);
|
||
quiz_assert_print_if_failure(equationStore.numberOfSolutions() == numberOfSolutions, equations[0]);
|
||
if (numberOfSolutions == INT_MAX) {
|
||
equationStore.removeAll();
|
||
return;
|
||
}
|
||
if (type == EquationStore::Type::LinearSystem) {
|
||
for (int i = 0; i < numberOfSolutions; i++) {
|
||
quiz_assert_print_if_failure(strcmp(equationStore.variableAtIndex(i),variables[i]) == 0, equations[0]);
|
||
}
|
||
} else {
|
||
quiz_assert_print_if_failure(strcmp(equationStore.variableAtIndex(0), variables[0]) == 0, equations[0]);
|
||
}
|
||
constexpr int bufferSize = 200;
|
||
char buffer[bufferSize];
|
||
for (int i = 0; i < numberOfSolutions; i++) {
|
||
equationStore.exactSolutionLayoutAtIndex(i, true).serializeForParsing(buffer, bufferSize);
|
||
quiz_assert_print_if_failure(strcmp(buffer, solutions[i]) == 0, equations[0]);
|
||
}
|
||
equationStore.removeAll();
|
||
}
|
||
|
||
void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char * variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) {
|
||
Shared::GlobalContext globalContext;
|
||
EquationStore equationStore;
|
||
addEquationWithText(&equationStore, equations, &globalContext);
|
||
bool replaceFunctionsButNotSymbols = false;
|
||
EquationStore::Error err = equationStore.exactSolve(&globalContext, &replaceFunctionsButNotSymbols);
|
||
quiz_assert(err == EquationStore::Error::RequireApproximateSolution);
|
||
equationStore.setIntervalBound(0, xMin);
|
||
equationStore.setIntervalBound(1, xMax);
|
||
equationStore.approximateSolve(&globalContext, replaceFunctionsButNotSymbols);
|
||
quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions);
|
||
quiz_assert(strcmp(equationStore.variableAtIndex(0), variable)== 0);
|
||
for (int i = 0; i < numberOfSolutions; i++) {
|
||
quiz_assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5);
|
||
}
|
||
quiz_assert(equationStore.haveMoreApproximationSolutions(&globalContext, replaceFunctionsButNotSymbols) == hasMoreSolutions);
|
||
equationStore.removeAll();
|
||
}
|
||
|
||
QUIZ_CASE(equation_solve) {
|
||
// x+y+z+a+b+c+d = 0
|
||
const char * variables1[] = {""};
|
||
const char * equations0[] = {"x+y+z+a+b+c+d=0", 0};
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// x^2+y = 0
|
||
const char * equations1[] = {"x^2+y=0", 0};
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// cos(x) = 0
|
||
const char * equations2[] = {"cos(x)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// 2 = 0
|
||
const char * equations3[] = {"2=0", 0};
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
// 0 = 0
|
||
const char * equations4[] = {"0=0", 0};
|
||
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX);
|
||
|
||
// x-x+2 = 0
|
||
const char * equations5[] = {"x-x+2=0", 0};
|
||
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
|
||
// x-x= 0
|
||
const char * equations6[] = {"x-x=0", 0};
|
||
assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX);
|
||
|
||
const char * variablesx[] = {"x", ""};
|
||
// 2x+3=4
|
||
const char * equations7[] = {"2x+3=4", 0};
|
||
const char * solutions7[] = {"\u0012\u00121\u0013/\u00122\u0013\u0013"}; // 1/2
|
||
assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions7, 1);
|
||
|
||
// 3x^2-4x+4=2
|
||
const char * equations8[] = {"3×x^2-4x+4=2", 0};
|
||
const char * solutions8[] = {"\u0012\u00122\u0013/\u00123\u0013\u0013-\u0012\u0012√\u00122\u0013\u0013/\u00123\u0013\u0013𝐢","\u0012\u00122\u0013/\u00123\u0013\u0013+\u0012\u0012√\u00122\u0013\u0013/\u00123\u0013\u0013𝐢", "-8"}; // 2/3-(√(2)/3)𝐢, 2/3+(√(2)/3)𝐢
|
||
assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions8, 3);
|
||
|
||
// 2×x^2-4×x+4=3
|
||
const char * equations9[] = {"2×x^2-4×x+4=3", 0};
|
||
const char * solutions9[] = {"\u0012\u0012-√\u00122\u0013+2\u0013/\u00122\u0013\u0013","\u0012\u0012√\u00122\u0013+2\u0013/\u00122\u0013\u0013", "8"}; // (-√(2)+2)/2, (√(2)+2)/2, 8
|
||
assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions9, 3);
|
||
|
||
// 2×x^2-4×x+2=0
|
||
const char * equations10[] = {"2×x^2-4×x+2=0", 0};
|
||
const char * solutions10[] = {"1", "0"};
|
||
assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions10, 2);
|
||
|
||
// x^2+x+1=3×x^2+pi×x-√(5)
|
||
const char * equations11[] = {"x^2+x+1=3×x^2+π×x-√(5)", 0};
|
||
const char * solutions11[] = {"\u0012\u0012√\u0012π^\u00122\u0013-2π+8√\u00125\u0013+9\u0013-π+1\u0013/\u00124\u0013\u0013", "\u0012\u0012-√\u0012π^\u00122\u0013-2π+8√\u00125\u0013+9\u0013-π+1\u0013/\u00124\u0013\u0013", "π^\u00122\u0013-2π+8√\u00125\u0013+9"}; // (√(π^2-2π+8√(5)+9)-π+1)/4, (-√(π^2-2π+8×√(5)+9)-π+1)/4, π^2-2π+8√(5)+9
|
||
assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions11, 3);
|
||
|
||
// (x-3)^2
|
||
const char * equations21[] = {"(x-3)^2=0", 0};
|
||
const char * solutions21[] = {"3", "0"};
|
||
assert_equation_system_exact_solve_to(equations21, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions21, 2);
|
||
|
||
// TODO
|
||
// x^3 - 4x^2 + 6x - 24 = 0
|
||
//const char * equations10[] = {"2×x^2-4×x+4=3", 0};
|
||
//assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, {"4", "𝐢×√(6)", "-𝐢×√(6)", "-11616"}, 4);
|
||
|
||
//x^3+x^2+1=0
|
||
// x^3-3x-2=0
|
||
|
||
// Linear System
|
||
const char * equations12[] = {"x+y=0", 0};
|
||
assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, INT_MAX);
|
||
|
||
const char * variablesxy[] = {"x", "y", ""};
|
||
|
||
const char * equations13[] = {"x+y=0", "3x+y=-5", 0};
|
||
const char * solutions13[] = {"-\u0012\u00125\u0013/\u00122\u0013\u0013", "\u0012\u00125\u0013/\u00122\u0013\u0013"}; // -5/2; 5/2
|
||
assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxy, solutions13, 2);
|
||
|
||
const char * variablesxyz[] = {"x", "y", "z", ""};
|
||
|
||
const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-π=0", 0};
|
||
const char * solutions14[] = {"\u0012\u0012-π-20\u0013/\u00128\u0013\u0013", "\u0012\u0012π+20\u0013/\u00128\u0013\u0013", "\u0012\u0012π\u0013/\u00124\u0013\u0013"}; // (-π-20)/8, (π+20)/8, π/4
|
||
assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyz, solutions14, 3);
|
||
|
||
const char * variablesxyzabc[] = {"x", "y", "z", "a", "b", "c"};
|
||
const char * equations22[] = {"x+y=0", "3x+y+z=-5", "4z-π=0", "a+b+c=0", "a = 3", "c = a+2", 0};
|
||
const char * solutions22[] = {"\u0012\u0012-π-20\u0013/\u00128\u0013\u0013", "\u0012\u0012π+20\u0013/\u00128\u0013\u0013", "\u0012\u0012π\u0013/\u00124\u0013\u0013", "3", "-8", "5"}; // (-π-20)/8, (π+20)/8, π/4, 3, 5, -8
|
||
assert_equation_system_exact_solve_to(equations22, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyzabc, solutions22, 6);
|
||
|
||
/* This test case needs the user defined variable. Indeed, in the equation
|
||
* store, m_variables is just before m_userVariables, so bad fetching in
|
||
* m_variables might fetch into m_userVariables and create problems. */
|
||
assert_simplify("0→x");
|
||
const char * variablesbDeyzt[] = {"b", "D", "e", "y", "z", "t"};
|
||
const char * equations23[] = {"b=0", "D=0", "e=0", "", "x+y+z+t=0", 0};
|
||
assert_equation_system_exact_solve_to(equations23, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesbDeyzt, nullptr, INT_MAX);
|
||
Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy();
|
||
|
||
// Monovariable non-polynomial equation
|
||
double solutions15[] = {-90.0, 90.0};
|
||
assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, "x", solutions15, 2, false);
|
||
|
||
double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0};
|
||
assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, "x", solutions16, 10, true);
|
||
|
||
double solutions17[] = {0};
|
||
assert_equation_approximate_solve_to("√(y)=0", -900.0, 1000.0, "y", solutions17, 1, false);
|
||
|
||
// Long variable names
|
||
const char * variablesabcde[] = {"abcde", ""};
|
||
const char * equations18[] = {"2abcde+3=4", 0};
|
||
const char * solutions18[] = {"\u0012\u00121\u0013/\u00122\u0013\u0013"}; // 1/2
|
||
assert_equation_system_exact_solve_to(equations18, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesabcde, solutions18, 1);
|
||
|
||
const char * variablesBig1Big2[] = {"Big1", "Big2", ""};
|
||
const char * equations19[] = {"Big1+Big2=0", "3Big1+Big2=-5", 0};
|
||
const char * solutions19[] = {"-\u0012\u00125\u0013/\u00122\u0013\u0013", "\u0012\u00125\u0013/\u00122\u0013\u0013"}; // -5/2, 5/2
|
||
assert_equation_system_exact_solve_to(equations19, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesBig1Big2, solutions19, 2);
|
||
|
||
// conj(x)*x+1 = 0
|
||
const char * equations20one = "conj(x)*x+1=0";
|
||
const char * equations20[] = {equations20one, 0};
|
||
assert_equation_system_exact_solve_to(equations20, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
|
||
assert_equation_approximate_solve_to(equations20one, -100.0, 100.0, "x", nullptr, 0, false);
|
||
}
|
||
|
||
QUIZ_CASE(equation_solve_complex_format) {
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real);
|
||
const char * variablesx[] = {"x", ""};
|
||
// x+I = 0 --> x = -𝐢
|
||
const char * equations0[] = {"x+𝐢=0", 0};
|
||
const char * solutions0[] = {"-𝐢"};
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
|
||
|
||
// x+√(-1) = 0 --> Not defined in R
|
||
const char * equations1[] = {"x+√(-1)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0);
|
||
|
||
// x^2+x+1=0 --> No solution in R
|
||
const char * equations2[] = {"x^2+x+1=0", 0};
|
||
const char * delta2[] = {"-3"};
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, delta2, 1);
|
||
|
||
// x^2-√(-1)=0 --> Not defined in R
|
||
const char * equations3[] = {"x^2-√(-1)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::EquationUnreal, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, nullptr, 0);
|
||
|
||
// x+√(-1)×√(-1) = 0 --> Not defined in R
|
||
const char * equations4[] = {"x+√(-1)×√(-1)=0", 0};
|
||
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0);
|
||
|
||
// root(-8,3)*x+3 = 0 --> 3/2 in R
|
||
const char * equations5[] = {"root(-8,3)*x+3=0", 0};
|
||
const char * solutions5[] = {"\u0012\u00123\u0013/\u00122\u0013\u0013"};
|
||
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions5, 1);
|
||
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian);
|
||
// x+𝐢 = 0 --> x = -𝐢
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
|
||
|
||
// x+√(-1) = 0 --> x = -𝐢
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
|
||
|
||
// x^2+x+1=0
|
||
const char * solutions2[] = {"-\u0012\u00121\u0013/\u00122\u0013\u0013-\u0012\u0012√\u00123\u0013\u0013/\u00122\u0013\u0013𝐢","-\u0012\u00121\u0013/\u00122\u0013\u0013+\u0012\u0012√\u00123\u0013\u0013/\u00122\u0013\u0013𝐢", "-3"}; // -1/2-((√(3))/2)𝐢, -1/2+((√(3))/2)𝐢, -3
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2, 3);
|
||
|
||
// x^2-√(-1)=0
|
||
const char * solutions3[] = {"-\u0012\u0012√\u00122\u0013\u0013/\u00122\u0013\u0013-\u0012\u0012√\u00122\u0013\u0013/\u00122\u0013\u0013𝐢", "\u0012\u0012√\u00122\u0013\u0013/\u00122\u0013\u0013+\u0012\u0012√\u00122\u0013\u0013/\u00122\u0013\u0013𝐢","4𝐢"}; // -√(2)/2-(√(2)/2)𝐢, √(2)/2+(√(2)/2)𝐢, 4𝐢
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3, 3);
|
||
|
||
// x+√(-1)×√(-1) = 0
|
||
const char * solutions4[] = {"1"};
|
||
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions4, 1);
|
||
|
||
const char * solutions5Cartesain[] = {"-\u0012\u00123\u0013/\u00124\u0013\u0013+\u0012\u00123√\u00123\u0013\u0013/\u00124\u0013\u0013𝐢"}; //-3/4+(3√3/4)*𝐢
|
||
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions5Cartesain, 1);
|
||
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar);
|
||
// x+𝐢 = 0 --> x = e^(-π/2×i)
|
||
const char * solutions0Polar[] = {"ℯ^\u0012-\u0012\u0012π\u0013/\u00122\u0013\u0013𝐢\u0013"}; // ℯ^(-(π/2)𝐢)
|
||
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1);
|
||
|
||
// x+√(-1) = 0 --> x = e^(-π/2𝐢)
|
||
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1);
|
||
|
||
// x^2+x+1=0
|
||
const char * solutions2Polar[] = {"ℯ^\u0012-\u0012\u00122π\u0013/\u00123\u0013\u0013𝐢\u0013","ℯ^\u0012\u0012\u00122π\u0013/\u00123\u0013\u0013𝐢\u0013", "3ℯ^\u0012π·𝐢\u0013"}; // ℯ^(-(2π/3)𝐢), ℯ^((2π/3)𝐢), 3ℯ^(π𝐢)
|
||
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2Polar, 3);
|
||
|
||
// x^2-√(-1)=0
|
||
const char * solutions3Polar[] = {"ℯ^\u0012-\u0012\u00123π\u0013/\u00124\u0013\u0013𝐢\u0013", "ℯ^\u0012\u0012\u0012π\u0013/\u00124\u0013\u0013𝐢\u0013", "4ℯ^\u0012\u0012\u0012π\u0013/\u00122\u0013\u0013𝐢\u0013"}; // ℯ^(-(3×π/4)𝐢)", "ℯ^((π/4)𝐢)", "4ℯ^((π/2)𝐢)
|
||
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3Polar, 3);
|
||
|
||
const char * solutions5Polar[] = {"\u0012\u00123\u0013/\u00122\u0013\u0013ℯ^\u0012\u0012\u00122π\u0013/\u00123\u0013\u0013𝐢\u0013"}; //3/2ℯ^\u0012\u00122π\u0012/3\u0013𝐢"};
|
||
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions5Polar, 1);
|
||
|
||
// Put back the complex format
|
||
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real);
|
||
}
|
||
|
||
QUIZ_CASE(equation_and_symbolic_computation) {
|
||
// x+a=0 : non linear system
|
||
const char * equation1[] = {"x+a=0", 0};
|
||
assert_equation_system_exact_solve_to(equation1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, nullptr, nullptr, INT_MAX);
|
||
|
||
// -3->a
|
||
Shared::GlobalContext globalContext;
|
||
Expression::ParseAndSimplify("-3→a", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
|
||
// x+a = 0 : x = 3
|
||
const char * variables1[] = {"x", ""};
|
||
const char * solutions1[] = {"3"};
|
||
assert_equation_system_exact_solve_to(equation1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, solutions1, 1);
|
||
|
||
/* a = 0 : the equation has no solution as the user defined a = -3, so a is
|
||
* not replaced with its context value and the result is a = 0. */
|
||
const char * equation2[] = {"a=0", 0};
|
||
const char * variables2[] = {"a", ""};
|
||
const char * solutions2[] = {"0"};
|
||
assert_equation_system_exact_solve_to(equation2, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables2, solutions2, 1, true);
|
||
|
||
// 4->b
|
||
Expression::ParseAndSimplify("-4→b", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
|
||
/* a + b = 0 : the equation has no solution as the user defined a = -3, and
|
||
* b = -4 so a and b are not replaced with their context values and the result
|
||
* is an infinity of solutions. */
|
||
const char * equation3[] = {"a+b=0", 0};
|
||
const char * variables3[] = {"a", "b", ""};
|
||
assert_equation_system_exact_solve_to(equation3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables3, nullptr, INT_MAX, true);
|
||
|
||
// a + b + c = 0 : the equation has the solution c = -7
|
||
const char * equation4[] = {"a+b+c=0", 0};
|
||
const char * variables4[] = {"c", ""};
|
||
const char * solutions4[] = {"7"};
|
||
assert_equation_system_exact_solve_to(equation4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables4, solutions4, 1);
|
||
|
||
/* a + c = 0 and a = 3: the system has no solution as the user defined a = -3,
|
||
* so a is not replaced with its context value and the result is a = 3 and
|
||
* c = -3. */
|
||
const char * equation5[] = {"a+c=0", "a=3", 0};
|
||
const char * variables5[] = {"a", "c", ""};
|
||
const char * solutions5[] = {"3", "-3"};
|
||
assert_equation_system_exact_solve_to(equation5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables5, solutions5, 2, true);
|
||
|
||
// x+1->f(x)
|
||
Expression::ParseAndSimplify("x+1→f(x)", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
|
||
// f(x) = 0 : x = -1
|
||
const char * equation6[] = {"f(x)=0", 0};
|
||
const char * variables6[] = {"x", ""};
|
||
const char * solutions6[] = {"-1",};
|
||
assert_equation_system_exact_solve_to(equation6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables6, solutions6, 1);
|
||
|
||
/* f(a) = 0 : the equation has no solution as the user defined a = -3, so a is
|
||
* not replaced with its context value and the result is a = -1. */
|
||
const char * equation7[] = {"f(a)=0", 0};
|
||
const char * variables7[] = {"a", ""};
|
||
const char * solutions7[] = {"-1",};
|
||
assert_equation_system_exact_solve_to(equation7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables7, solutions7, 1, true);
|
||
|
||
// a+x+1->g(x)
|
||
Expression::ParseAndSimplify("a+x+2→g(x)", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
|
||
// g(x) = 0 : x = 2
|
||
const char * equation8[] = {"g(x)=0", 0};
|
||
const char * variables8[] = {"x", ""};
|
||
const char * solutions8[] = {"1",};
|
||
assert_equation_system_exact_solve_to(equation8, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables8, solutions8, 1);
|
||
|
||
/* g(a) = 0 : the equation has no solution as the user defined a = -3, so a is
|
||
* not replaced with its context value and the equation becomes a+a+2=0. The
|
||
* solution is a = -1. */
|
||
const char * equation9[] = {"g(a)=0", 0};
|
||
const char * variables9[] = {"a", ""};
|
||
const char * solutions9[] = {"-1",};
|
||
assert_equation_system_exact_solve_to(equation9, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables9, solutions9, 1, true);
|
||
|
||
/* c = d
|
||
* d = 5
|
||
* h(x) = c + d + 3
|
||
* /c = -3
|
||
* \h(x) = 0
|
||
* c and d context values should not be used, and the solution is c = -3, d = 0 */
|
||
Expression::ParseAndSimplify("5→d", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
Expression::ParseAndSimplify("d→c", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
Expression::ParseAndSimplify("c+d+3→h(x)", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
|
||
const char * equation10[] = {"h(x)=0", "c = -3", 0};
|
||
const char * variables10[] = {"c", "d", ""};
|
||
const char * solutions10[] = {"-3", "0"};
|
||
assert_equation_system_exact_solve_to(equation10, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables10, solutions10, 2, true);
|
||
|
||
const char * equation11[] = {"c+d=5", "c-d=1", 0};
|
||
const char * variables11[] = {"c", "d", ""};
|
||
const char * solutions11[] = {"3", "2"};
|
||
assert_equation_system_exact_solve_to(equation11, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables11, solutions11, 2, true);
|
||
|
||
|
||
// Clean the storage
|
||
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("b.exp").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("c.exp").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("d.exp").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("g.func").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("h.func").destroy();
|
||
}
|
||
|
||
}
|