Files
Upsilon/poincare/src/tree_node.cpp

215 lines
5.1 KiB
C++

#include <poincare/tree_node.h>
#include <poincare/tree_pool.h>
#include <poincare/tree_by_reference.h>
#include <stdio.h>
namespace Poincare {
bool TreeNode::isStatic() const {
return m_identifier <= TreePool::FirstStaticNodeIdentifier;
}
// Node operations
void TreeNode::release(int currentNumberOfChildren) {
if (isStatic()) {
// Do not release static nodes
return;
}
m_referenceCounter--;
if (m_referenceCounter == 0) {
TreeByReference(this).removeChildrenAndDestroyInPlace(currentNumberOfChildren);
}
}
void TreeNode::rename(int identifier, bool unregisterPreviousIdentifier) {
if (unregisterPreviousIdentifier) {
/* The previous identifier should not always be unregistered. For instance,
* if the node is a clone and still has the original node's identifier,
* unregistering it would lose the access to the original node. */
TreePool::sharedPool()->unregisterNode(this);
}
m_identifier = identifier;
m_referenceCounter = 1;
TreePool::sharedPool()->registerNode(this);
}
// Hierarchy
TreeNode * TreeNode::parent() const {
if (isStatic()) {
return nullptr;
}
/* Choose between these algorithms: the first has complexity O(numberNodes)
* but uses O(3maxNumberNodes) space. The second is much clearer for the
* reader and uses no space, but has complexity O(numberNodes^2) */
#if 0
int cursor = -1;
TreeNode * parentsHistory[TreePool::MaxNumberOfNodes];
int numberOfChildrenHistory[TreePool::MaxNumberOfNodes];
int childrenVisitedCountHistory[TreePool::MaxNumberOfNodes];
for (TreeNode * node : TreePool::sharedPool()->allNodes()) {
if (node->identifier() == m_identifier) {
return cursor >= 0 ? parentsHistory[cursor] : nullptr;
}
if (cursor >= 0) {
childrenVisitedCountHistory[cursor] = childrenVisitedCountHistory[cursor]+1;
}
int nodeChildrenCount = node->numberOfChildren();
if (nodeChildrenCount > 0) {
cursor++;
parentsHistory[cursor] = node;
numberOfChildrenHistory[cursor] = nodeChildrenCount;
childrenVisitedCountHistory[cursor] = 0;
} else {
if (cursor >= 0 && (numberOfChildrenHistory[cursor] == childrenVisitedCountHistory[cursor])) {
cursor--;
}
}
}
assert(false);
return nullptr;
#else
for (TreeNode * node : TreePool::sharedPool()->allNodes()) {
if (node == this) {
return nullptr;
}
if (node->hasChild(this)) {
return node;
}
}
if (isAllocationFailure()) {
return nullptr;
}
assert(false);
return nullptr;
#endif
}
TreeNode * TreeNode::root() {
if (isStatic()) {
return this;
}
for (TreeNode * root : TreePool::sharedPool()->roots()) {
if (hasAncestor(root, true)) {
return root;
}
}
assert(false);
return nullptr;
}
int TreeNode::numberOfDescendants(bool includeSelf) const {
int result = includeSelf ? 1 : 0;
TreeNode * nextSiblingNode = nextSibling();
TreeNode * currentNode = next();
while (currentNode != nextSiblingNode) {
result++;
currentNode = currentNode->next();
}
return result;
}
TreeNode * TreeNode::childAtIndex(int i) const {
assert(i >= 0);
assert(i < numberOfChildren());
TreeNode * child = next();
while (i > 0) {
child = child->nextSibling();
assert(child != nullptr);
i--;
}
return child;
}
int TreeNode::indexOfChild(const TreeNode * child) const {
if (child == nullptr) {
return -1;
}
int childrenCount = numberOfChildren();
TreeNode * childAtIndexi = next();
for (int i = 0; i < childrenCount; i++) {
if (childAtIndexi == child) {
return i;
}
childAtIndexi = childAtIndexi->nextSibling();
}
return -1;
}
int TreeNode::indexInParent() const {
TreeNode * p = parent();
if (p == nullptr) {
return -1;
}
return p->indexOfChild(this);
}
bool TreeNode::hasChild(const TreeNode * child) const {
if (child == nullptr) {
return false;
}
for (TreeNode * c : directChildren()) {
if (child == c) {
return true;
}
}
return false;
}
bool TreeNode::hasAncestor(const TreeNode * node, bool includeSelf) const {
if (includeSelf && node == this) {
return true;
}
for (TreeNode * t : node->depthFirstChildren()) {
if (this == t) {
return true;
}
}
return false;
}
bool TreeNode::hasSibling(const TreeNode * e) const {
if (e == nullptr) {
return false;
}
TreeNode * p = parent();
if (p == nullptr) {
return false;
}
for (TreeNode * childNode : p->directChildren()) {
if (childNode == e) {
return true;
}
}
return false;
}
TreeNode::TreeNode() :
m_identifier(TreePool::NoNodeIdentifier),
m_referenceCounter(1)
{
}
size_t TreeNode::deepSize(int realNumberOfChildren) const {
if (realNumberOfChildren == -1) {
// TODO: Error handling
return
reinterpret_cast<char *>(nextSibling())
-
reinterpret_cast<const char *>(this);
}
TreeNode * realNextSibling = next();
for (int i = 0; i < realNumberOfChildren; i++) {
realNextSibling = realNextSibling->nextSibling();
}
return
reinterpret_cast<char *>(realNextSibling)
-
reinterpret_cast<const char *>(this);
}
}