mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 16:57:31 +01:00
146 lines
3.7 KiB
C++
146 lines
3.7 KiB
C++
#include "binomial_law.h"
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
|
|
namespace Probability {
|
|
|
|
BinomialLaw::BinomialLaw() :
|
|
TwoParameterLaw(20.0, 0.5)
|
|
{
|
|
}
|
|
|
|
I18n::Message BinomialLaw::title() {
|
|
return I18n::Message::BinomialLaw;
|
|
}
|
|
|
|
Law::Type BinomialLaw::type() const {
|
|
return Type::Binomial;
|
|
}
|
|
|
|
bool BinomialLaw::isContinuous() const {
|
|
return false;
|
|
}
|
|
|
|
I18n::Message BinomialLaw::parameterNameAtIndex(int index) {
|
|
assert(index >= 0 && index < 2);
|
|
if (index == 0) {
|
|
return I18n::Message::N;
|
|
} else {
|
|
return I18n::Message::P;
|
|
}
|
|
}
|
|
|
|
I18n::Message BinomialLaw::parameterDefinitionAtIndex(int index) {
|
|
assert(index >= 0 && index < 2);
|
|
if (index == 0) {
|
|
return I18n::Message::RepetitionNumber;
|
|
} else {
|
|
return I18n::Message::SuccessProbability;
|
|
}
|
|
}
|
|
|
|
float BinomialLaw::xMin() {
|
|
float min = 0.0f;
|
|
float max = m_parameter1 > 0.0f ? m_parameter1 : 1.0f;
|
|
return min - k_displayLeftMarginRatio * (max - min);
|
|
}
|
|
|
|
float BinomialLaw::xMax() {
|
|
float min = 0.0f;
|
|
float max = m_parameter1;
|
|
if (max <= min) {
|
|
max = min + 1.0f;
|
|
}
|
|
return max + k_displayRightMarginRatio*(max - min);
|
|
}
|
|
|
|
float BinomialLaw::yMin() {
|
|
return -k_displayBottomMarginRatio*yMax();
|
|
}
|
|
|
|
float BinomialLaw::yMax() {
|
|
int maxAbscissa = m_parameter2 < 1.0f ? (m_parameter1+1)*m_parameter2 : m_parameter1;
|
|
float result = evaluateAtAbscissa(maxAbscissa);
|
|
if (result <= 0.0f || std::isnan(result)) {
|
|
result = 1.0f;
|
|
}
|
|
return result*(1.0f+ k_displayTopMarginRatio);
|
|
}
|
|
|
|
|
|
bool BinomialLaw::authorizedValueAtIndex(float x, int index) const {
|
|
if (index == 0) {
|
|
/* As the cumulative probability are computed by looping over all discrete
|
|
* abscissa within the interesting range, the complexity of the cumulative
|
|
* probability is linear with the size of the range. Here we cap the maximal
|
|
* size of the range to 10000. If one day we want to increase or get rid of
|
|
* this cap, we should implement the explicite formula of the cumulative
|
|
* probability (which depends on an incomplete beta function) to make the
|
|
* comlexity O(1). */
|
|
if (x != (int)x || x < 0.0f || x > 99999.0f) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
if (x < 0.0f || x > 1.0f) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
double BinomialLaw::cumulativeDistributiveInverseForProbability(double * probability) {
|
|
if (m_parameter1 == 0.0 && (m_parameter2 == 0.0 || m_parameter2 == 1.0)) {
|
|
return NAN;
|
|
}
|
|
if (*probability >= 1.0) {
|
|
return m_parameter1;
|
|
}
|
|
return Law::cumulativeDistributiveInverseForProbability(probability);
|
|
}
|
|
|
|
double BinomialLaw::rightIntegralInverseForProbability(double * probability) {
|
|
if (m_parameter1 == 0.0 && (m_parameter2 == 0.0 || m_parameter2 == 1.0)) {
|
|
return NAN;
|
|
}
|
|
if (*probability <= 0.0) {
|
|
return m_parameter1;
|
|
}
|
|
return Law::rightIntegralInverseForProbability(probability);
|
|
}
|
|
|
|
template<typename T>
|
|
T BinomialLaw::templatedApproximateAtAbscissa(T x) const {
|
|
if (m_parameter1 == 0) {
|
|
if (m_parameter2 == 0 || m_parameter2 == 1) {
|
|
return NAN;
|
|
}
|
|
if (floor(x) == 0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
if (m_parameter2 == 1) {
|
|
if (floor(x) == m_parameter1) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
if (m_parameter2 == 0) {
|
|
if (floor(x) == 0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
if (x > m_parameter1) {
|
|
return 0;
|
|
}
|
|
T lResult = std::lgamma((T)(m_parameter1+1.0)) - std::lgamma(std::floor(x)+(T)1.0) - std::lgamma((T)m_parameter1 - std::floor(x)+(T)1.0)+
|
|
std::floor(x)*std::log((T)m_parameter2) + ((T)m_parameter1-std::floor(x))*std::log((T)(1.0-m_parameter2));
|
|
return std::exp(lResult);
|
|
}
|
|
|
|
}
|
|
|
|
template float Probability::BinomialLaw::templatedApproximateAtAbscissa(float x) const;
|
|
template double Probability::BinomialLaw::templatedApproximateAtAbscissa(double x) const;
|