mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 16:57:31 +01:00
118 lines
3.0 KiB
C++
118 lines
3.0 KiB
C++
#include "normal_law.h"
|
|
#include "erf_inv.h"
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
#include <float.h>
|
|
#include <ion.h>
|
|
|
|
namespace Probability {
|
|
|
|
float NormalLaw::xMin() {
|
|
if (m_parameter2 == 0.0f) {
|
|
return m_parameter1 - 1.0f;
|
|
}
|
|
return m_parameter1 - 5.0f*std::fabs(m_parameter2);
|
|
}
|
|
|
|
float NormalLaw::xMax() {
|
|
if (m_parameter2 == 0.0f) {
|
|
return m_parameter1 + 1.0f;
|
|
}
|
|
return m_parameter1 + 5.0f*std::fabs(m_parameter2);
|
|
}
|
|
|
|
float NormalLaw::yMin() {
|
|
return -k_displayBottomMarginRatio*yMax();
|
|
}
|
|
|
|
float NormalLaw::yMax() {
|
|
float maxAbscissa = m_parameter1;
|
|
float result = evaluateAtAbscissa(maxAbscissa);
|
|
if (std::isnan(result) || result <= 0.0f) {
|
|
result = 1.0f;
|
|
}
|
|
return result*(1.0f+ k_displayTopMarginRatio);
|
|
}
|
|
|
|
I18n::Message NormalLaw::parameterNameAtIndex(int index) {
|
|
if (index == 0) {
|
|
return I18n::Message::Mu;
|
|
}
|
|
assert(index == 1);
|
|
return I18n::Message::Sigma;
|
|
}
|
|
|
|
I18n::Message NormalLaw::parameterDefinitionAtIndex(int index) {
|
|
if (index == 0) {
|
|
return I18n::Message::MeanDefinition;
|
|
}
|
|
assert(index == 1);
|
|
return I18n::Message::DeviationDefinition;
|
|
}
|
|
|
|
float NormalLaw::evaluateAtAbscissa(float x) const {
|
|
if (m_parameter2 == 0.0f) {
|
|
return NAN;
|
|
}
|
|
return (1.0f/(std::fabs(m_parameter2)*std::sqrt(2.0f*M_PI)))*std::exp(-0.5f*std::pow((x-m_parameter1)/m_parameter2,2));
|
|
}
|
|
|
|
bool NormalLaw::authorizedValueAtIndex(float x, int index) const {
|
|
if (index == 0) {
|
|
return true;
|
|
}
|
|
if (x <= FLT_MIN || std::fabs(m_parameter1/x) > k_maxRatioMuSigma) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void NormalLaw::setParameterAtIndex(float f, int index) {
|
|
TwoParameterLaw::setParameterAtIndex(f, index);
|
|
if (index == 0 && std::fabs(m_parameter1/m_parameter2) > k_maxRatioMuSigma) {
|
|
m_parameter2 = m_parameter1/k_maxRatioMuSigma;
|
|
}
|
|
}
|
|
|
|
double NormalLaw::cumulativeDistributiveFunctionAtAbscissa(double x) const {
|
|
if (m_parameter2 == 0.0f) {
|
|
return NAN;
|
|
}
|
|
return standardNormalCumulativeDistributiveFunctionAtAbscissa((x-m_parameter1)/std::fabs(m_parameter2));
|
|
}
|
|
|
|
double NormalLaw::cumulativeDistributiveInverseForProbability(double * probability) {
|
|
if (m_parameter2 == 0.0f) {
|
|
return NAN;
|
|
}
|
|
return standardNormalCumulativeDistributiveInverseForProbability(*probability)*std::fabs(m_parameter2) + m_parameter1;
|
|
}
|
|
|
|
double NormalLaw::standardNormalCumulativeDistributiveFunctionAtAbscissa(double abscissa) const {
|
|
if (abscissa == 0.0) {
|
|
return 0.5;
|
|
}
|
|
if (abscissa < 0.0) {
|
|
return 1.0 - standardNormalCumulativeDistributiveFunctionAtAbscissa(-abscissa);
|
|
}
|
|
if (abscissa > k_boundStandardNormalDistribution) {
|
|
return 1.0;
|
|
}
|
|
return 0.5+0.5*std::erf(abscissa/std::sqrt(2.0));
|
|
}
|
|
|
|
double NormalLaw::standardNormalCumulativeDistributiveInverseForProbability(double probability) {
|
|
if (probability >= 1.0) {
|
|
return INFINITY;
|
|
}
|
|
if (probability <= 0.0) {
|
|
return -INFINITY;
|
|
}
|
|
if (probability < 0.5) {
|
|
return -standardNormalCumulativeDistributiveInverseForProbability(1-probability);
|
|
}
|
|
return std::sqrt(2.0)*erfInv(2.0*probability-1.0);
|
|
}
|
|
|
|
}
|