mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-20 01:08:15 +01:00
78 lines
1.7 KiB
C++
78 lines
1.7 KiB
C++
#include "poisson_law.h"
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
#include <ion.h>
|
|
|
|
namespace Probability {
|
|
|
|
PoissonLaw::PoissonLaw() :
|
|
OneParameterLaw(4.0f)
|
|
{
|
|
}
|
|
|
|
I18n::Message PoissonLaw::title() {
|
|
return I18n::Message::PoissonLaw;
|
|
}
|
|
|
|
Law::Type PoissonLaw::type() const {
|
|
return Type::Poisson;
|
|
}
|
|
|
|
bool PoissonLaw::isContinuous() const {
|
|
return false;
|
|
}
|
|
|
|
I18n::Message PoissonLaw::parameterNameAtIndex(int index) {
|
|
assert(index == 0);
|
|
return I18n::Message::Lambda;
|
|
}
|
|
|
|
I18n::Message PoissonLaw::parameterDefinitionAtIndex(int index) {
|
|
assert(index == 0);
|
|
return I18n::Message::LambdaPoissonDefinition;
|
|
}
|
|
|
|
float PoissonLaw::xMin() {
|
|
return -k_displayLeftMarginRatio*xMax();
|
|
}
|
|
|
|
float PoissonLaw::xMax() {
|
|
assert(m_parameter1 != 0);
|
|
return (m_parameter1 + 5.0f*std::sqrt(m_parameter1))*(1.0f+k_displayRightMarginRatio);
|
|
}
|
|
|
|
float PoissonLaw::yMin() {
|
|
return - k_displayBottomMarginRatio * yMax();
|
|
}
|
|
|
|
float PoissonLaw::yMax() {
|
|
int maxAbscissa = (int)m_parameter1;
|
|
assert(maxAbscissa >= 0.0f);
|
|
float result = evaluateAtAbscissa(maxAbscissa);
|
|
if (result <= 0.0f) {
|
|
result = 1.0f;
|
|
}
|
|
return result*(1.0f+ k_displayTopMarginRatio);
|
|
}
|
|
|
|
bool PoissonLaw::authorizedValueAtIndex(float x, int index) const {
|
|
if (x <= 0.0f || x > 999.0f) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
T PoissonLaw::templatedApproximateAtAbscissa(T x) const {
|
|
if (x < 0) {
|
|
return NAN;
|
|
}
|
|
T lResult = -(T)m_parameter1+std::floor(x)*std::log((T)m_parameter1)-std::lgamma(std::floor(x)+1);
|
|
return std::exp(lResult);
|
|
}
|
|
|
|
}
|
|
|
|
template float Probability::PoissonLaw::templatedApproximateAtAbscissa(float x) const;
|
|
template double Probability::PoissonLaw::templatedApproximateAtAbscissa(double x) const;
|