mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-20 01:08:15 +01:00
103 lines
4.8 KiB
C++
103 lines
4.8 KiB
C++
#ifndef SOLVER_EQUATION_STORE_H
|
|
#define SOLVER_EQUATION_STORE_H
|
|
|
|
#include "equation.h"
|
|
#include "../shared/expression_model_store.h"
|
|
#include <poincare/symbol_abstract.h>
|
|
#include <stdint.h>
|
|
|
|
namespace Solver {
|
|
|
|
class EquationStore : public Shared::ExpressionModelStore {
|
|
public:
|
|
enum class Type {
|
|
LinearSystem,
|
|
PolynomialMonovariable,
|
|
Monovariable,
|
|
};
|
|
enum class Error : int16_t {
|
|
NoError = 0,
|
|
EquationUndefined = -1,
|
|
TooManyVariables = -2,
|
|
NonLinearSystem = -3,
|
|
RequireApproximateSolution = -4,
|
|
};
|
|
/* EquationStore */
|
|
EquationStore();
|
|
Equation * modelAtIndex(int i) override {
|
|
assert(i>=0 && i<m_numberOfModels);
|
|
return &m_equations[i];
|
|
}
|
|
Equation * definedModelAtIndex(int i) override { return static_cast<Equation *>(Shared::ExpressionModelStore::definedModelAtIndex(i)); }
|
|
int maxNumberOfModels() const override { return k_maxNumberOfEquations; }
|
|
Type type() const {
|
|
return m_type;
|
|
}
|
|
const char * variableAtIndex(size_t i) {
|
|
assert(i < Poincare::Expression::k_maxNumberOfVariables && m_variables[i][0] != 0);
|
|
return m_variables[i];
|
|
}
|
|
int numberOfSolutions() const {
|
|
return m_numberOfSolutions;
|
|
}
|
|
/* Exact resolution */
|
|
Error exactSolve(Poincare::Context * context);
|
|
/* The exact solutions are displayed in a table with 2 layouts: an exact
|
|
* Layout and an approximate layout. For example, 'sqrt(2)' and '1.414213'.
|
|
* The boolean exactLayout indicates if we want the exact layout or the
|
|
* approximate one. */
|
|
Poincare::Layout exactSolutionLayoutAtIndex(int i, bool exactLayout);
|
|
/* Exact layout and approximate layout of an exact solution can be:
|
|
* - identical: for instance, 5 and 5
|
|
* - equal: for instance 1/2 and 0.5
|
|
* - non-equal: for instance 1/3 and 0.333.
|
|
*/
|
|
bool exactSolutionLayoutsAtIndexAreIdentical(int i) {
|
|
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
|
|
return m_exactSolutionIdentity[i];
|
|
}
|
|
bool exactSolutionLayoutsAtIndexAreEqual(int i) {
|
|
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
|
|
return m_exactSolutionEquality[i];
|
|
}
|
|
/* Approximate resolution */
|
|
double intervalBound(int index) const;
|
|
void setIntervalBound(int index, double value);
|
|
double approximateSolutionAtIndex(int i);
|
|
void approximateSolve(Poincare::Context * context);
|
|
bool haveMoreApproximationSolutions(Poincare::Context * context);
|
|
|
|
void tidy() override;
|
|
static constexpr int k_maxNumberOfExactSolutions = Poincare::Expression::k_maxNumberOfVariables > Poincare::Expression::k_maxPolynomialDegree + 1? Poincare::Expression::k_maxNumberOfVariables : Poincare::Expression::k_maxPolynomialDegree + 1;
|
|
static constexpr int k_maxNumberOfApproximateSolutions = 10;
|
|
static constexpr int k_maxNumberOfSolutions = k_maxNumberOfExactSolutions > k_maxNumberOfApproximateSolutions ? k_maxNumberOfExactSolutions : k_maxNumberOfApproximateSolutions;
|
|
private:
|
|
static constexpr double k_precision = 0.01;
|
|
static constexpr int k_maxNumberOfEquations = Poincare::Expression::k_maxNumberOfVariables; // Enable the same number of equations as the number of unknown variables
|
|
Equation * emptyModel() override;
|
|
Equation * nullModel() override {
|
|
return emptyModel();
|
|
}
|
|
void setModelAtIndex(Shared::ExpressionModel * f, int i) override;
|
|
Error resolveLinearSystem(Poincare::Expression solutions[k_maxNumberOfExactSolutions], Poincare::Expression solutionApproximations[k_maxNumberOfExactSolutions], Poincare::Expression coefficients[k_maxNumberOfEquations][Poincare::Expression::k_maxNumberOfVariables], Poincare::Expression constants[k_maxNumberOfEquations], Poincare::Context * context);
|
|
Error oneDimensialPolynomialSolve(Poincare::Expression solutions[k_maxNumberOfExactSolutions], Poincare::Expression solutionApproximations[k_maxNumberOfExactSolutions], Poincare::Expression polynomialCoefficients[Poincare::Expression::k_maxNumberOfPolynomialCoefficients], int degree, Poincare::Context * context);
|
|
void tidySolution();
|
|
bool isExplictlyComplex();
|
|
Poincare::Preferences::ComplexFormat updatedComplexFormat();
|
|
|
|
Equation m_equations[k_maxNumberOfEquations];
|
|
Type m_type;
|
|
char m_variables[Poincare::Expression::k_maxNumberOfVariables][Poincare::SymbolAbstract::k_maxNameSize];
|
|
int m_numberOfSolutions;
|
|
Poincare::Layout m_exactSolutionExactLayouts[k_maxNumberOfApproximateSolutions];
|
|
Poincare::Layout m_exactSolutionApproximateLayouts[k_maxNumberOfExactSolutions];
|
|
bool m_exactSolutionIdentity[k_maxNumberOfExactSolutions];
|
|
bool m_exactSolutionEquality[k_maxNumberOfExactSolutions];
|
|
double m_intervalApproximateSolutions[2];
|
|
double m_approximateSolutions[k_maxNumberOfApproximateSolutions];
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|