mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
approximation encouters a complex value All approximation methods take the complex format into account.
93 lines
4.1 KiB
C++
93 lines
4.1 KiB
C++
#include <quiz.h>
|
|
#include <poincare/expression.h>
|
|
#include <poincare/rational.h>
|
|
#include <poincare/addition.h>
|
|
#include <apps/shared/global_context.h>
|
|
#include <ion.h>
|
|
#include <assert.h>
|
|
#include "helper.h"
|
|
#include "./tree/helpers.h"
|
|
|
|
using namespace Poincare;
|
|
|
|
static inline void assert_approximation_equals(const Expression i, float f) {
|
|
Shared::GlobalContext c;
|
|
quiz_assert(i.approximateToScalar<float>(c, Cartesian, Degree) == f);
|
|
}
|
|
|
|
static inline void assert_parsed_expression_is_equal_to(const char * exp, Expression e) {
|
|
Expression result = Expression::Parse(exp);
|
|
quiz_assert(!result.isUninitialized());
|
|
quiz_assert(result.isIdenticalTo(e));
|
|
}
|
|
|
|
QUIZ_CASE(poincare_addition_cast_does_not_copy) {
|
|
Rational i1(1);
|
|
Rational i2(2);
|
|
Addition j(i1, i2);
|
|
Expression k = j;
|
|
quiz_assert(k.identifier() == (static_cast<Addition&>(k)).identifier());
|
|
quiz_assert(i1.identifier() == (static_cast<Expression&>(i1)).identifier());
|
|
quiz_assert(k.identifier() == (static_cast<Expression&>(k)).identifier());
|
|
}
|
|
|
|
QUIZ_CASE(poincare_addition_without_parsing) {
|
|
Rational i1(1);
|
|
Rational i2(2);
|
|
Addition j(i1, i2);
|
|
assert_approximation_equals(j, 3.0f);
|
|
}
|
|
|
|
QUIZ_CASE(poincare_addition_parsing) {
|
|
Rational i1(1);
|
|
Rational i2(2);
|
|
Addition j1(i1, i2);
|
|
assert_parsed_expression_is_equal_to("1+2", j1);
|
|
}
|
|
|
|
QUIZ_CASE(poincare_addition_evaluate) {
|
|
assert_parsed_expression_evaluates_to<float>("1+2", "3");
|
|
assert_parsed_expression_evaluates_to<float>("I", "I");
|
|
assert_parsed_expression_evaluates_to<float>("I+I", "2*I");
|
|
assert_parsed_expression_evaluates_to<double>("2+I+4+I", "6+2*I");
|
|
#if MATRICES_ARE_DEFINED
|
|
assert_parsed_expression_evaluates_to<float>("[[1,2][3,4][5,6]]+3", "[[4,5][6,7][8,9]]");
|
|
assert_parsed_expression_evaluates_to<double>("[[1,2+I][3,4][5,6]]+3+I", "[[4+I,5+2*I][6+I,7+I][8+I,9+I]]");
|
|
assert_parsed_expression_evaluates_to<float>("3+[[1,2][3,4][5,6]]", "[[4,5][6,7][8,9]]");
|
|
assert_parsed_expression_evaluates_to<double>("3+I+[[1,2+I][3,4][5,6]]", "[[4+I,5+2*I][6+I,7+I][8+I,9+I]]");
|
|
assert_parsed_expression_evaluates_to<float>("[[1,2][3,4][5,6]]+[[1,2][3,4][5,6]]", "[[2,4][6,8][10,12]]");
|
|
assert_parsed_expression_evaluates_to<double>("[[1,2+I][3,4][5,6]]+[[1,2+I][3,4][5,6]]", "[[2,4+2*I][6,8][10,12]]");
|
|
#endif
|
|
}
|
|
|
|
QUIZ_CASE(poincare_addition_simplify) {
|
|
assert_parsed_expression_simplify_to("1+x", "1+x");
|
|
assert_parsed_expression_simplify_to("1/2+1/3+1/4+1/5+1/6+1/7", "223/140");
|
|
assert_parsed_expression_simplify_to("1+x+4-i-2x", "5-i-x");
|
|
assert_parsed_expression_simplify_to("2+1", "3");
|
|
assert_parsed_expression_simplify_to("1+2", "3");
|
|
assert_parsed_expression_simplify_to("1+2+3+4+5+6+7", "28");
|
|
assert_parsed_expression_simplify_to("(0+0)", "0");
|
|
assert_parsed_expression_simplify_to("2+A", "2+A");
|
|
assert_parsed_expression_simplify_to("1+2+3+4+5+A+6+7", "28+A");
|
|
assert_parsed_expression_simplify_to("1+A+2+B+3", "6+A+B");
|
|
assert_parsed_expression_simplify_to("-2+6", "4");
|
|
assert_parsed_expression_simplify_to("-2-6", "-8");
|
|
assert_parsed_expression_simplify_to("-A", "-A");
|
|
assert_parsed_expression_simplify_to("A-A", "0");
|
|
assert_parsed_expression_simplify_to("-5P+3P", "-2*P");
|
|
assert_parsed_expression_simplify_to("1-3+A-5+2A-4A", "-7-A");
|
|
assert_parsed_expression_simplify_to("A+B-A-B", "0");
|
|
assert_parsed_expression_simplify_to("A+B+(-1)*A+(-1)*B", "0");
|
|
assert_parsed_expression_simplify_to("2+13cos(2)-23cos(2)", "2-10*cos(2)");
|
|
assert_parsed_expression_simplify_to("1+1+ln(2)+(5+3*2)/9-4/7+1/98", "(2347+882*ln(2))/882");
|
|
assert_parsed_expression_simplify_to("1+2+0+cos(2)", "3+cos(2)");
|
|
assert_parsed_expression_simplify_to("A-A+2cos(2)+B-B-cos(2)", "cos(2)");
|
|
assert_parsed_expression_simplify_to("x+3+P+2*x", "3+3*x+P");
|
|
assert_parsed_expression_simplify_to("1/(x+1)+1/(P+2)", "(3+x+P)/(2+2*x+P+x*P)");
|
|
assert_parsed_expression_simplify_to("1/x^2+1/(x^2*P)", "(1+P)/(x^2*P)");
|
|
assert_parsed_expression_simplify_to("1/x^2+1/(x^3*P)", "(1+x*P)/(x^3*P)");
|
|
assert_parsed_expression_simplify_to("4x/x^2+3P/(x^3*P)", "(3+4*x^2)/x^3");
|
|
assert_parsed_expression_simplify_to("3^(1/2)+2^(-2*3^(1/2)*X^P)/2", "(1+2*2^(2*R(3)*X^P)*R(3))/(2*2^(2*R(3)*X^P))");
|
|
}
|