mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
148 lines
6.2 KiB
C++
148 lines
6.2 KiB
C++
#include <quiz.h>
|
|
#include <poincare/integer.h>
|
|
#include <poincare/rational.h>
|
|
#include <assert.h>
|
|
#include "helper.h"
|
|
#include "tree/helpers.h"
|
|
|
|
using namespace Poincare;
|
|
|
|
QUIZ_CASE(poincare_rational_constructor) {
|
|
int initialPoolSize = pool_size();
|
|
Rational a("123","324");
|
|
Rational b("3456");
|
|
Rational c(123,324);
|
|
Rational d(3456789);
|
|
Integer overflow = Integer::Overflow(false);
|
|
Rational e(overflow);
|
|
Rational f(overflow, overflow);
|
|
assert_pool_size(initialPoolSize+6);
|
|
}
|
|
|
|
static inline void assert_equal(const Rational i, const Rational j) {
|
|
quiz_assert(Rational::NaturalOrder(i, j) == 0);
|
|
}
|
|
static inline void assert_not_equal(const Rational i, const Rational j) {
|
|
quiz_assert(Rational::NaturalOrder(i, j) != 0);
|
|
}
|
|
|
|
static inline void assert_lower(const Rational i, const Rational j) {
|
|
quiz_assert(Rational::NaturalOrder(i, j) < 0);
|
|
}
|
|
|
|
static inline void assert_greater(const Rational i, const Rational j) {
|
|
quiz_assert(Rational::NaturalOrder(i, j) > 0);
|
|
}
|
|
|
|
QUIZ_CASE(poincare_rational_compare) {
|
|
assert_equal(Rational(123,324), Rational(41,108));
|
|
assert_not_equal(Rational(123,234), Rational(42, 108));
|
|
assert_lower(Rational(123,234), Rational(456,567));
|
|
assert_lower(Rational(-123, 234),Rational(456, 567));
|
|
assert_greater(Rational(123, 234),Rational(-456, 567));
|
|
assert_greater(Rational(123, 234),Rational("123456789123456789", "12345678912345678910"));
|
|
}
|
|
|
|
QUIZ_CASE(poincare_rational_properties) {
|
|
quiz_assert(Rational(-2).sign() == ExpressionNode::Sign::Negative);
|
|
quiz_assert(Rational(-2, 3).sign() == ExpressionNode::Sign::Negative);
|
|
quiz_assert(Rational(2, 3).sign() == ExpressionNode::Sign::Positive);
|
|
quiz_assert(Rational(0).isZero());
|
|
quiz_assert(!Rational(231).isZero());
|
|
quiz_assert(Rational(1).isOne());
|
|
quiz_assert(!Rational(-1).isOne());
|
|
quiz_assert(!Rational(1).isMinusOne());
|
|
quiz_assert(Rational(-1).isMinusOne());
|
|
quiz_assert(Rational(1,2).isHalf());
|
|
quiz_assert(!Rational(-1).isHalf());
|
|
quiz_assert(Rational(-1,2).isMinusHalf());
|
|
quiz_assert(!Rational(3,2).isMinusHalf());
|
|
quiz_assert(Rational(10).isTen());
|
|
quiz_assert(!Rational(-1).isTen());
|
|
}
|
|
|
|
static inline void assert_add_to(const Rational i, const Rational j, const Rational k) {
|
|
quiz_assert(Rational::NaturalOrder(Rational::Addition(i, j), k) == 0);
|
|
}
|
|
|
|
QUIZ_CASE(poincare_rational_addition) {
|
|
assert_add_to(Rational(1,2), Rational(1), Rational(3,2));
|
|
assert_add_to(Rational("18446744073709551616","4294967296"), Rational(8,9), Rational("38654705672","9"));
|
|
assert_add_to(Rational("18446744073709551616","4294967296"), Rational(-8,9), Rational("38654705656","9"));
|
|
}
|
|
|
|
static inline void assert_pow_to(const Rational i,const Integer j, const Rational k) {
|
|
quiz_assert(Rational::NaturalOrder(Rational::IntegerPower(i, j), k) == 0);
|
|
}
|
|
|
|
QUIZ_CASE(poincare_rational_power) {
|
|
assert_pow_to(Rational(4,5), Rational(3).signedIntegerNumerator(), Rational(64,125));
|
|
assert_pow_to(Rational(4,5), Rational(-3).signedIntegerNumerator(), Rational(125,64));
|
|
}
|
|
|
|
// Simplify
|
|
|
|
QUIZ_CASE(poincare_rational_simplify) {
|
|
// 1/MaxIntegerString()
|
|
char buffer[400] = "1/";
|
|
strlcpy(buffer+2, MaxIntegerString(), 400-2);
|
|
assert_parsed_expression_simplify_to(buffer, buffer);
|
|
// 1/OverflowedIntegerString()
|
|
strlcpy(buffer+2, BigOverflowedIntegerString(), 400-2);
|
|
assert_parsed_expression_simplify_to(buffer, "0");
|
|
// MaxIntegerString()
|
|
assert_parsed_expression_simplify_to(MaxIntegerString(), MaxIntegerString());
|
|
// OverflowedIntegerString()
|
|
assert_parsed_expression_simplify_to(BigOverflowedIntegerString(), Infinity::Name());
|
|
assert_parsed_expression_simplify_to(BigOverflowedIntegerString(), Infinity::Name());
|
|
// -OverflowedIntegerString()
|
|
buffer[0] = '-';
|
|
strlcpy(buffer+1, BigOverflowedIntegerString(), 400-1);
|
|
assert_parsed_expression_simplify_to(buffer, "-inf");
|
|
|
|
assert_parsed_expression_simplify_to("-1/3", "-1/3");
|
|
assert_parsed_expression_simplify_to("22355/45325", "4471/9065");
|
|
assert_parsed_expression_simplify_to("0000.000000", "0");
|
|
assert_parsed_expression_simplify_to(".000000", "0");
|
|
assert_parsed_expression_simplify_to("0000", "0");
|
|
assert_parsed_expression_simplify_to("0.1234567", "1234567/10000000");
|
|
assert_parsed_expression_simplify_to("123.4567", "1234567/10000");
|
|
assert_parsed_expression_simplify_to("0.1234", "617/5000");
|
|
assert_parsed_expression_simplify_to("0.1234000", "617/5000");
|
|
assert_parsed_expression_simplify_to("001234000", "1234000");
|
|
assert_parsed_expression_simplify_to("001.234000E3", "1234");
|
|
assert_parsed_expression_simplify_to("001234000E-4", "617/5");
|
|
assert_parsed_expression_simplify_to("3/4+5/4-12+1/567", "-5669/567");
|
|
assert_parsed_expression_simplify_to("34/78+67^(-1)", "1178/2613");
|
|
assert_parsed_expression_simplify_to("12348/34564", "3087/8641");
|
|
assert_parsed_expression_simplify_to("1-0.3-0.7", "0");
|
|
assert_parsed_expression_simplify_to("123456789123456789+112233445566778899", "235690234690235688");
|
|
assert_parsed_expression_simplify_to("56^56", "79164324866862966607842406018063254671922245312646690223362402918484170424104310169552592050323456");
|
|
assert_parsed_expression_simplify_to("999^999", "999^999");
|
|
assert_parsed_expression_simplify_to("999^-999", "1/999^999");
|
|
assert_parsed_expression_simplify_to("0^0", Undefined::Name());
|
|
assert_parsed_expression_simplify_to("x^0", "1");
|
|
assert_parsed_expression_simplify_to("P^0", "1");
|
|
assert_parsed_expression_simplify_to("A^0", "1");
|
|
assert_parsed_expression_simplify_to("(-3)^0", "1");
|
|
}
|
|
|
|
QUIZ_CASE(poincare_rational_approximate) {
|
|
assert_parsed_expression_evaluates_to<float>("1/3", "0.3333333");
|
|
assert_parsed_expression_evaluates_to<double>("123456/1234567", "9.9999432999586E-2");
|
|
}
|
|
|
|
|
|
//Serialize
|
|
|
|
QUIZ_CASE(poincare_rational_serialize) {
|
|
assert_parsed_expression_serialize_to(Rational(-2, 3), "-2/3");
|
|
assert_parsed_expression_serialize_to(Rational("2345678909876"), "2345678909876");
|
|
assert_parsed_expression_serialize_to(Rational("-2345678909876", "5"), "-2345678909876/5");
|
|
assert_parsed_expression_serialize_to(Rational(MaxIntegerString()), MaxIntegerString());
|
|
Integer one(1);
|
|
Integer overflow = Integer::Overflow(false);
|
|
assert_parsed_expression_serialize_to(Rational(one, overflow), "1/inf");
|
|
assert_parsed_expression_serialize_to(Rational(overflow), Infinity::Name());
|
|
}
|