Files
Upsilon/apps/solver/equation_store.h
Émilie Feral 503e07fe5a [apps/sequence] Fix SequenceStore: sequences are not memoized but all
kept in the store (because we need all of them to evaluate one
sequence). setMemoizedModelAtIndex now store u, v and w sequences in
this order to avoid requiring expiring pointers.
2019-08-13 09:44:00 +02:00

108 lines
5.2 KiB
C++

#ifndef SOLVER_EQUATION_STORE_H
#define SOLVER_EQUATION_STORE_H
#include "equation.h"
#include "../shared/expression_model_store.h"
#include <poincare/symbol_abstract.h>
#include <stdint.h>
namespace Solver {
class EquationStore : public Shared::ExpressionModelStore {
public:
enum class Type {
LinearSystem,
PolynomialMonovariable,
Monovariable,
};
enum class Error : int16_t {
NoError = 0,
EquationUndefined = -1,
EquationUnreal = -2,
TooManyVariables = -3,
NonLinearSystem = -4,
RequireApproximateSolution = -5,
};
EquationStore();
/* ExpressionModelStore */
int maxNumberOfModels() const override { return k_maxNumberOfEquations; }
Shared::ExpiringPointer<Equation> modelForRecord(Ion::Storage::Record record) const { return Shared::ExpiringPointer<Equation>(static_cast<Equation *>(privateModelForRecord(record))); }
Ion::Storage::Record::ErrorStatus addEmptyModel() override;
/* EquationStore */
Type type() const {
return m_type;
}
const char * variableAtIndex(size_t i) {
assert(i < Poincare::Expression::k_maxNumberOfVariables && m_variables[i][0] != 0);
return m_variables[i];
}
int numberOfSolutions() const {
return m_numberOfSolutions;
}
/* Exact resolution */
Error exactSolve(Poincare::Context * context);
/* The exact solutions are displayed in a table with 2 layouts: an exact
* Layout and an approximate layout. For example, 'sqrt(2)' and '1.414213'.
* The boolean exactLayout indicates if we want the exact layout or the
* approximate one. */
Poincare::Layout exactSolutionLayoutAtIndex(int i, bool exactLayout);
/* Exact layout and approximate layout of an exact solution can be:
* - identical: for instance, 5 and 5
* - equal: for instance 1/2 and 0.5
* - non-equal: for instance 1/3 and 0.333.
*/
bool exactSolutionLayoutsAtIndexAreIdentical(int i) {
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
return m_exactSolutionIdentity[i];
}
bool exactSolutionLayoutsAtIndexAreEqual(int i) {
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
return m_exactSolutionEquality[i];
}
/* Approximate resolution */
double intervalBound(int index) const;
void setIntervalBound(int index, double value);
double approximateSolutionAtIndex(int i);
void approximateSolve(Poincare::Context * context);
bool haveMoreApproximationSolutions(Poincare::Context * context);
void tidy() override;
static constexpr int k_maxNumberOfExactSolutions = Poincare::Expression::k_maxNumberOfVariables > Poincare::Expression::k_maxPolynomialDegree + 1? Poincare::Expression::k_maxNumberOfVariables : Poincare::Expression::k_maxPolynomialDegree + 1;
static constexpr int k_maxNumberOfApproximateSolutions = 10;
static constexpr int k_maxNumberOfSolutions = k_maxNumberOfExactSolutions > k_maxNumberOfApproximateSolutions ? k_maxNumberOfExactSolutions : k_maxNumberOfApproximateSolutions;
private:
static constexpr double k_precision = 0.01;
static constexpr int k_maxNumberOfEquations = Poincare::Expression::k_maxNumberOfVariables; // Enable the same number of equations as the number of unknown variables
// ExpressionModelStore
const char * modelExtension() const override { return Ion::Storage::eqExtension; }
/* We don't really use model memoization as the number of Equation is limited
* and we keep enough Equations to store them all. */
Shared::ExpressionModelHandle * setMemoizedModelAtIndex(int cacheIndex, Ion::Storage::Record record) const override;
Shared::ExpressionModelHandle * memoizedModelAtIndex(int cacheIndex) const override;
Error resolveLinearSystem(Poincare::Expression solutions[k_maxNumberOfExactSolutions], Poincare::Expression solutionApproximations[k_maxNumberOfExactSolutions], Poincare::Expression coefficients[k_maxNumberOfEquations][Poincare::Expression::k_maxNumberOfVariables], Poincare::Expression constants[k_maxNumberOfEquations], Poincare::Context * context);
Error oneDimensialPolynomialSolve(Poincare::Expression solutions[k_maxNumberOfExactSolutions], Poincare::Expression solutionApproximations[k_maxNumberOfExactSolutions], Poincare::Expression polynomialCoefficients[Poincare::Expression::k_maxNumberOfPolynomialCoefficients], int degree, Poincare::Context * context);
void tidySolution();
bool isExplictlyComplex(Poincare::Context * context);
Poincare::Preferences::ComplexFormat updatedComplexFormat(Poincare::Context * context);
mutable Equation m_equations[k_maxNumberOfEquations];
Type m_type;
char m_variables[Poincare::Expression::k_maxNumberOfVariables][Poincare::SymbolAbstract::k_maxNameSize];
int m_numberOfSolutions;
Poincare::Layout m_exactSolutionExactLayouts[k_maxNumberOfApproximateSolutions];
Poincare::Layout m_exactSolutionApproximateLayouts[k_maxNumberOfExactSolutions];
bool m_exactSolutionIdentity[k_maxNumberOfExactSolutions];
bool m_exactSolutionEquality[k_maxNumberOfExactSolutions];
double m_intervalApproximateSolutions[2];
double m_approximateSolutions[k_maxNumberOfApproximateSolutions];
};
}
#endif