Files
Upsilon/apps/regression/model/power_model.cpp
Léa Saviot f6c15198bc [apps/regression] Power regression uses logarithm of series
This matches other apps results and we directly compute the values from
the data instead of doing a gradient descent.
2020-02-12 15:13:21 +01:00

85 lines
2.5 KiB
C++

#include "power_model.h"
#include "../store.h"
#include <math.h>
#include <assert.h>
#include <poincare/code_point_layout.h>
#include <poincare/horizontal_layout.h>
#include <poincare/vertical_offset_layout.h>
using namespace Poincare;
namespace Regression {
Layout PowerModel::layout() {
if (m_layout.isUninitialized()) {
constexpr int size = 4;
Layout layoutChildren[size] = {
CodePointLayout::Builder('a', k_layoutFont),
CodePointLayout::Builder(UCodePointMiddleDot, k_layoutFont),
CodePointLayout::Builder('X', k_layoutFont),
VerticalOffsetLayout::Builder(
CodePointLayout::Builder('b', k_layoutFont),
VerticalOffsetLayoutNode::Position::Superscript
),
};
m_layout = HorizontalLayout::Builder(layoutChildren, size);
}
return m_layout;
}
double PowerModel::evaluate(double * modelCoefficients, double x) const {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
return a*pow(x,b);
}
double PowerModel::levelSet(double * modelCoefficients, double xMin, double step, double xMax, double y, Poincare::Context * context) {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
if (a == 0 || b == 0|| y/a <= 0) {
return NAN;
}
return exp(log(y/a)/b);
}
double PowerModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
if (derivateCoefficientIndex == 0) {
// Derivate: pow(x,b)
return pow(x,b);
}
if (derivateCoefficientIndex == 1) {
assert(x >= 0);
/* We assume all xi are positive.
* For x = 0, a*pow(x,b) = 0, the partial derivate along b is 0
* For x > 0, a*pow(x,b) = a*exp(b*ln(x)), the partial derivate along b is
* ln(x)*a*pow(x,b) */
return x == 0 ? 0 : log(x)*a*pow(x, b);
}
assert(false);
return 0.0;
}
void PowerModel::fit(Store * store, int series, double * modelCoefficients, Poincare::Context * context) {
/* Y1 = aX1^b => ln(Y1) = ln(a) + b*ln(X1)*/
modelCoefficients[0] = exp(store->yIntercept(series, true));
modelCoefficients[1] = store->slope(series, true);
}
bool PowerModel::dataSuitableForFit(Store * store, int series) const {
if (!Model::dataSuitableForFit(store, series)) {
return false;
}
int numberOfPairs = store->numberOfPairsOfSeries(series);
for (int j = 0; j < numberOfPairs; j++) {
if (store->get(series, 0, j) < 0) {
return false;
}
}
return true;
}
}