Files
Upsilon/apps/code/script_template.cpp
Léa Saviot d1c8bbdaf7 [apps/code] The console marks imported script for the var box
After lauching the console, if we fetch a script we mark it as fetched.
When the variable box displays variables from imported scripts, it scans
all the variables from the scripts marked as fetched.
2020-06-04 14:50:06 +02:00

119 lines
3.3 KiB
C++

#include "script_template.h"
namespace Code {
constexpr ScriptTemplate emptyScriptTemplate(".py", "\x01\x00" R"(from math import *
)");
constexpr ScriptTemplate squaresScriptTemplate("squares.py", "\x01\x00" R"(
#from math import sin as stew, cos as cabbage
from math import *
)");
/*constexpr ScriptTemplate squaresScriptTemplate("squares.py", "\x01\x00" R"(
import math
import math as m
import math, cmath
import math as m, cmath as cm
from math import *
from math import sin
from math import sin as stew
from math import sin, cos
from math import sin as stew, cos as cabbage)");*/
/*
import math // math
import math as m // math
import math, cmath // math math
import math as m, cmath as cm
from math import *
from math import sin
from math import sin as stew
from math import sin, cos
from math import sin as stew, cos as cabbage
*/
constexpr ScriptTemplate mandelbrotScriptTemplate("mandelbrot.py", "\x01\x00" R"(# This script draws a Mandelbrot fractal set
# N_iteration: degree of precision
import kandinsky
def mandelbrot(N_iteration):
for x in range(320):
for y in range(222):
# Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i)
z = complex(0,0)
# Rescale to fit the drawing screen 320x222
c = complex(3.5*x/319-2.5, -2.5*y/221+1.25)
i = 0
while (i < N_iteration) and abs(z) < 2:
i = i + 1
z = z*z+c
# Choose the color of the dot from the Mandelbrot sequence
rgb = int(255*i/N_iteration)
col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25))
# Draw a pixel colored in 'col' at position (x,y)
kandinsky.set_pixel(x,y,col))");
constexpr ScriptTemplate polynomialScriptTemplate("polynomial.py", "\x01\x00" R"(from math import *
# roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0
def roots(a,b,c):
delta = b*b-4*a*c
if delta == 0:
return -b/(2*a)
elif delta > 0:
x_1 = (-b-sqrt(delta))/(2*a)
x_2 = (-b+sqrt(delta))/(2*a)
return x_1, x_2
else:
return None)");
constexpr ScriptTemplate parabolaScriptTemplate("parabola.py", "\x01\x00" R"(from matplotlib.pyplot import *
from math import *
g=9.81
def x(t,v_0,alpha):
return v_0*cos(alpha)*t
def y(t,v_0,alpha,h_0):
return -0.5*g*t**2+v_0*sin(alpha)*t+h_0
def vx(v_0,alpha):
return v_0*cos(alpha)
def vy(t,v_0,alpha):
return -g*t+v_0*sin(alpha)
def t_max(v_0,alpha,h_0):
return (v_0*sin(alpha)+sqrt((v_0**2)*(sin(alpha)**2)+2*g*h_0))/g
def simulation(v_0=15,alpha=pi/4,h_0=2):
tMax=t_max(v_0,alpha,h_0)
accuracy=1/10**(floor(log10(tMax))-1)
T_MAX=floor(tMax*accuracy)+1
X=[x(t/accuracy,v_0,alpha) for t in range(T_MAX)]
Y=[y(t/accuracy,v_0,alpha,h_0) for t in range(T_MAX)]
VX=[vx(v_0,alpha) for t in range(T_MAX)]
VY=[vy(t/accuracy,v_0,alpha) for t in range(T_MAX)]
for i in range(T_MAX):
arrow(X[i],Y[i],VX[i]/accuracy,VY[i]/accuracy)
grid()
show())");
const ScriptTemplate * ScriptTemplate::Empty() {
return &emptyScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Squares() {
return &squaresScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Mandelbrot() {
return &mandelbrotScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Polynomial() {
return &polynomialScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Parabola() {
return &parabolaScriptTemplate;
}
}