Files
Upsilon/apps/shared/storage_cartesian_function.cpp
2018-11-23 12:04:03 +01:00

131 lines
5.9 KiB
C++

#include "storage_cartesian_function.h"
#include "storage_expression_model_store.h"
#include "poincare_helpers.h"
#include <poincare/derivative.h>
#include <poincare/integral.h>
#include <escher/palette.h>
#include <float.h>
#include <cmath>
using namespace Poincare;
namespace Shared {
void StorageCartesianFunction::DefaultName(char buffer[], size_t bufferSize) {
constexpr int k_maxNumberOfDefaultLetterNames = 4;
static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = {
'f', 'g', 'h', 'p'
};
/* First default names are f, g, h, p and then f0, f1... ie, "f[number]",
* for instance "f12", that does not exist yet in the storage. */
size_t constantNameLength = 1; // 'f', no null-terminating char
assert(bufferSize > constantNameLength+1);
// Find the next available name
int currentNumber = -k_maxNumberOfDefaultLetterNames;
int currentNumberLength = 0;
int availableBufferSize = bufferSize - constantNameLength;
while (currentNumberLength < availableBufferSize) {
// Choose letter
buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0];
// Choose number if required
if (currentNumber >= 0) {
currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize);
} else {
buffer[1] = 0;
}
if (GlobalContext::SymbolAbstractNameIsFree(buffer)) {
// Name found
break;
}
currentNumber++;
}
assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize);
}
StorageCartesianFunction StorageCartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) {
static int s_colorIndex = 0;
// Create the record
char nameBuffer[SymbolAbstract::k_maxNameSize];
int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor);
CartesianFunctionRecordData data(Palette::DataColor[s_colorIndex++ % numberOfColors]);
if (baseName == nullptr) {
DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize);
baseName = nameBuffer;
}
*error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, GlobalContext::funcExtension, &data, sizeof(data));
// Return if error
if (*error != Ion::Storage::Record::ErrorStatus::None) {
return StorageCartesianFunction();
}
// Return the StorageCartesianFunction withthe new record
return StorageCartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, GlobalContext::funcExtension));
}
int StorageCartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize, char arg) {
// Fill buffer with f(x). Keep one char for derivative sign.
int numberOfChars = nameWithArgument(buffer, bufferSize-1, arg);
assert(numberOfChars + 1 < bufferSize);
char * lastChar = buffer+numberOfChars;
do {
*(lastChar+1) = *lastChar;
lastChar--;
} while (*(lastChar+1) != '(' && lastChar >= buffer);
*(lastChar+1) = '\'';
return numberOfChars+1;
}
bool StorageCartesianFunction::displayDerivative() const {
return recordData()->displayDerivative();
}
void StorageCartesianFunction::setDisplayDerivative(bool display) {
return recordData()->setDisplayDerivative(display);
}
double StorageCartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
Poincare::Derivative derivative(expression(context).clone(), Symbol(Symbol::SpecialSymbols::UnknownX), Poincare::Float<double>(x)); // derivative takes ownership of Poincare::Float<double>(x) and the clone of expression
/* TODO: when we approximate derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(derivative, *context);
}
double StorageCartesianFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const {
// TODO: this does not work yet because integral does not understand UnknownX
Poincare::Integral integral(expression(context).clone(), Poincare::Float<double>(start), Poincare::Float<double>(end)); // Integral takes ownership of args
/* TODO: when we approximate integral, we might want to simplify the integral
* here. However, we might want to do it once for all x (to avoid lagging in
* the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(integral, *context);
}
Expression::Coordinate2D StorageCartesianFunction::nextMinimumFrom(double start, double step, double max, Context * context) const {
const char unknownX[2] = {Poincare::Symbol::UnknownX, 0};
return expression(context).nextMinimum(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit());
}
Expression::Coordinate2D StorageCartesianFunction::nextMaximumFrom(double start, double step, double max, Context * context) const {
const char unknownX[2] = {Poincare::Symbol::UnknownX, 0};
return expression(context).nextMaximum(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit());
}
double StorageCartesianFunction::nextRootFrom(double start, double step, double max, Context * context) const {
const char unknownX[2] = {Poincare::Symbol::UnknownX, 0};
return expression(context).nextRoot(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit());
}
Expression::Coordinate2D StorageCartesianFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, Expression e) const {
const char unknownX[2] = {Poincare::Symbol::UnknownX, 0};
return expression(context).nextIntersection(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit(), e);
}
StorageCartesianFunction::CartesianFunctionRecordData * StorageCartesianFunction::recordData() const {
assert(!isNull());
Ion::Storage::Record::Data d = value();
return reinterpret_cast<CartesianFunctionRecordData *>(const_cast<void *>(d.buffer));
}
}