mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
134 lines
3.1 KiB
C++
134 lines
3.1 KiB
C++
#include "law.h"
|
|
#include <cmath>
|
|
#include <float.h>
|
|
|
|
namespace Probability {
|
|
|
|
float Law::xGridUnit() {
|
|
return computeGridUnit(Axis::X, xMax() - xMin());
|
|
}
|
|
|
|
double Law::cumulativeDistributiveFunctionAtAbscissa(double x) const {
|
|
if (!isContinuous()) {
|
|
int end = std::round(x);
|
|
double result = 0.0;
|
|
for (int k = 0; k <=end; k++) {
|
|
result += evaluateAtDiscreteAbscissa(k);
|
|
/* Avoid too long loop */
|
|
if (k > k_maxNumberOfOperations) {
|
|
break;
|
|
}
|
|
if (result >= k_maxProbability) {
|
|
result = 1.0;
|
|
break;
|
|
}
|
|
|
|
}
|
|
return result;
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
double Law::rightIntegralFromAbscissa(double x) const {
|
|
if (isContinuous()) {
|
|
return 1.0 - cumulativeDistributiveFunctionAtAbscissa(x);
|
|
}
|
|
return 1.0 - cumulativeDistributiveFunctionAtAbscissa(x-1.0);
|
|
}
|
|
|
|
double Law::finiteIntegralBetweenAbscissas(double a, double b) const {
|
|
if (b < a) {
|
|
return 0.0;
|
|
}
|
|
if (isContinuous()) {
|
|
return cumulativeDistributiveFunctionAtAbscissa(b) - cumulativeDistributiveFunctionAtAbscissa(a);
|
|
}
|
|
int start = std::round(a);
|
|
int end = std::round(b);
|
|
double result = 0.0;
|
|
for (int k = start; k <=end; k++) {
|
|
result += evaluateAtDiscreteAbscissa(k);
|
|
/* Avoid too long loop */
|
|
if (k-start > k_maxNumberOfOperations) {
|
|
break;
|
|
}
|
|
if (result >= k_maxProbability) {
|
|
result = 1.0;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double Law::cumulativeDistributiveInverseForProbability(double * probability) {
|
|
if (*probability >= 1.0) {
|
|
return INFINITY;
|
|
}
|
|
if (isContinuous()) {
|
|
return 0.0;
|
|
}
|
|
if (*probability <= 0.0) {
|
|
return 0.0;
|
|
}
|
|
double p = 0.0;
|
|
int k = 0;
|
|
double delta = 0.0;
|
|
do {
|
|
delta = std::fabs(*probability-p);
|
|
p += evaluateAtDiscreteAbscissa(k++);
|
|
if (p >= k_maxProbability && std::fabs(*probability-1.0) <= delta) {
|
|
*probability = 1.0;
|
|
return k-1.0;
|
|
}
|
|
} while (std::fabs(*probability-p) <= delta && k < k_maxNumberOfOperations && p < 1.0);
|
|
p -= evaluateAtDiscreteAbscissa(--k);
|
|
if (k == k_maxNumberOfOperations) {
|
|
*probability = 1.0;
|
|
return INFINITY;
|
|
}
|
|
*probability = p;
|
|
if (std::isnan(*probability)) {
|
|
return NAN;
|
|
}
|
|
return k-1.0;
|
|
}
|
|
|
|
double Law::rightIntegralInverseForProbability(double * probability) {
|
|
if (isContinuous()) {
|
|
double f = 1.0 - *probability;
|
|
return cumulativeDistributiveInverseForProbability(&f);
|
|
}
|
|
if (*probability >= 1.0) {
|
|
return 0.0;
|
|
}
|
|
if (*probability <= 0.0) {
|
|
return INFINITY;
|
|
}
|
|
double p = 0.0;
|
|
int k = 0;
|
|
double delta = 0.0;
|
|
do {
|
|
delta = std::fabs(1.0-*probability-p);
|
|
p += evaluateAtDiscreteAbscissa(k++);
|
|
if (p >= k_maxProbability && std::fabs(1.0-*probability-p) <= delta) {
|
|
*probability = 0.0;
|
|
return k;
|
|
}
|
|
} while (std::fabs(1.0-*probability-p) <= delta && k < k_maxNumberOfOperations);
|
|
if (k == k_maxNumberOfOperations) {
|
|
*probability = 1.0;
|
|
return INFINITY;
|
|
}
|
|
*probability = 1.0 - (p - evaluateAtDiscreteAbscissa(k-1));
|
|
if (std::isnan(*probability)) {
|
|
return NAN;
|
|
}
|
|
return k-1.0;
|
|
}
|
|
|
|
double Law::evaluateAtDiscreteAbscissa(int k) const {
|
|
return 0.0;
|
|
}
|
|
|
|
}
|