mirror of
https://github.com/modelec/detection_pot.git
synced 2026-01-19 00:57:28 +01:00
26 lines
1.1 KiB
Python
26 lines
1.1 KiB
Python
import tensorflow as tf
|
|
|
|
# Définir la fonction pour parser les exemples TFRecord (similaire à ce que vous avez utilisé)
|
|
def _parse_function(proto):
|
|
keys_to_features = {
|
|
'image/encoded': tf.io.FixedLenFeature([], tf.string),
|
|
'image/format': tf.io.FixedLenFeature([], tf.string),
|
|
'image/object/class/label': tf.io.FixedLenFeature([], tf.int64), # Assurez-vous que le type correspond
|
|
'image/object/bbox/xmin': tf.io.FixedLenFeature([], tf.float32),
|
|
'image/object/bbox/ymin': tf.io.FixedLenFeature([], tf.float32),
|
|
'image/object/bbox/xmax': tf.io.FixedLenFeature([], tf.float32),
|
|
'image/object/bbox/ymax': tf.io.FixedLenFeature([], tf.float32),
|
|
}
|
|
parsed_features = tf.io.parse_single_example(proto, keys_to_features)
|
|
return parsed_features
|
|
|
|
|
|
# Charger les TFRecords
|
|
tfrecords_path = "Pot-plante.tfrecord"
|
|
dataset = tf.data.TFRecordDataset(tfrecords_path)
|
|
|
|
# Afficher les informations pour chaque exemple TFRecord
|
|
for raw_record in dataset.take(5): # Prenez les 5 premiers exemples pour illustration
|
|
parsed_record = _parse_function(raw_record.numpy())
|
|
print(parsed_record)
|