Files
detection_pot/aruco/ArucoDetector.cpp
ackimixs 9fba9a577e change
2024-05-02 14:50:22 +02:00

277 lines
9.7 KiB
C++

#include "ArucoDetector.h"
ArucoDetector::ArucoDetector(const std::string& calibrationPath, const Team team, const bool headless) : headless(headless), team(team)
{
// opencv 4.8
// this->detector = cv::aruco::ArucoDetector(getPredefinedDictionary(cv::aruco::DICT_4X4_50), cv::aruco::DetectorParameters());
// this->dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
// this->parameters = cv::aruco::DetectorParameters();
// 4.6
this->dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
this->parameters = cv::aruco::DetectorParameters::create();
// TODO
// Adjusting parameters based on specific needs
/*parameters->adaptiveThreshConstant = true;
parameters->minMarkerPerimeterRate = 0.02;
parameters->maxMarkerPerimeterRate = 4.0;
parameters->perspectiveRemoveIgnoredMarginPerCell = 0.13;
parameters->polygonalApproxAccuracyRate = 0.03;*/
this->readCameraParameters(calibrationPath);
this->cam = new lccv::PiCamera;
cam->options->video_width=1920;
cam->options->video_height=1080;
cam->options->framerate=5;
cam->options->verbose=true;
started = true;
if (!headless)
{
cv::namedWindow("ArUco Detection", cv::WINDOW_NORMAL);
}
// auto whiteFlower = ArucoTag(36, "White flower", 20, FLOWER);
// whiteFlower.setFlowerObjectRepresentation();
// this->addArucoTag(whiteFlower);
// auto purpleFlower = ArucoTag(13, "Purple flower", 20, FLOWER);
// purpleFlower.setFlowerObjectRepresentation();
// this->addArucoTag(purpleFlower);
// this->addArucoTag(ArucoTag(47, "Solar panel", 50, SOLAR_PANEL));
cam->startVideo();
}
ArucoDetector::~ArucoDetector()
{
cam->stopVideo();
cv::destroyAllWindows();
delete cam;
}
void ArucoDetector::readCameraParameters(const std::string& path)
{
cv::FileStorage fs(path, cv::FileStorage::READ);
if (fs.isOpened()) {
fs["cameraMatrix"] >> this->cameraMatrix;
fs["distCoeffs"] >> this->distCoeffs;
fs.release();
} else {
std::cerr << "Error reading calibration file." << std::endl;
}
}
void ArucoDetector::addArucoTag(const ArucoTag& tag)
{
this->arucoTags.push_back(tag);
}
std::pair<int, std::vector<std::pair<ArucoTag, std::pair<cv::Mat, cv::Mat>>>> ArucoDetector::detectArucoTags(std::vector<ArucoTag> tags)
{
/*if (!started)
{
std::pair<int, std::vector<std::pair<ArucoTag, std::pair<cv::Mat, cv::Mat>>>> result;
result.first = -2;
return result;
}*/
if (tags.empty())
{
tags = this->arucoTags;
}
cv::Mat frame;
cv::Mat frameNotRotated;
cv::Mat frameDistored;
cam->getVideoFrame(frameNotRotated, 1000);
cv::flip(frameNotRotated, frameDistored, -1);
cv::undistort(frameDistored, frame, cameraMatrix, distCoeffs);
std::pair<int, std::vector<std::pair<ArucoTag, std::pair<cv::Mat, cv::Mat>>>> result;
if (frame.empty()) {
result.first = -2;
return result;
}
// Convert frame to grayscale
cv::Mat gray;
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
std::vector<int> markerIds;
std::vector<std::vector<cv::Point2f>> markerCorners;
// Preprocess with adaptive thresholding to handle varying lighting
/*cv::Mat adaptiveThresh;
cv::adaptiveThreshold(gray, adaptiveThresh, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY, 11, 2);
// Find contours in the thresholded image
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(adaptiveThresh, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
// Approximate contours to polygons
std::vector<std::vector<cv::Point>> approxContours(contours.size());
for (size_t i = 0; i < contours.size(); i++) {
cv::approxPolyDP(cv::Mat(contours[i]), approxContours[i], 3, true); // Adjust epsilon as needed
}
// Use approximated contours to define regions of interest (ROIs)
std::vector<cv::Rect> ROIs;
for (const auto& contour : approxContours) {
cv::Rect boundingRect = cv::boundingRect(contour);
// Optionally, apply filtering based on ROI size or aspect ratio
// For example:
// if (boundingRect.area() > minArea && boundingRect.width / static_cast<double>(boundingRect.height) > minAspectRatio) {
ROIs.push_back(boundingRect);
}
// Detect ArUco markers within defined ROIs
for (const auto& roi : ROIs) {
cv::Rect roiRect = roi & cv::Rect(0, 0, frame.cols, frame.rows); // Ensure the ROI is within the image boundaries
cv::Mat roiFrame = frame(roiRect).clone(); // Extract ROI
// Detect ArUco markers within the ROI
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>> corners;
cv::aruco::detectMarkers(roiFrame, this->dictionary, corners, ids, this->parameters);
// Adjust marker corners to global coordinates
for (auto& corner : corners) {
for (auto& pt : corner) {
pt.x += roiRect.x;
pt.y += roiRect.y;
}
}
// Merge results
markerIds.insert(markerIds.end(), ids.begin(), ids.end());
markerCorners.insert(markerCorners.end(), corners.begin(), corners.end());
}*/
// opencv 4.8
// detector.detectMarkers(frame, markerCorners, markerIds);
// 4.6
cv::aruco::detectMarkers(frame, this->dictionary, markerCorners, markerIds, this->parameters);
if (!markerIds.empty())
{
if (!headless)
{
cv::aruco::drawDetectedMarkers(frame, markerCorners, markerIds);
}
for (size_t i = 0; i < markerCorners.size(); i++)
{
int id = markerIds[i];
if (std::find_if(tags.begin(), tags.end(), [id](const ArucoTag& tag) { return tag.id == id; }) == tags.end())
{
continue;
}
ArucoTag tag = *std::find_if(tags.begin(), tags.end(), [id](const ArucoTag& tag) { return tag.id == id; });
cv::Mat rvec, tvec;
try {
solvePnP(tag.objectRepresenation, markerCorners.at(i), cameraMatrix, distCoeffs, rvec, tvec, false, cv::SOLVEPNP_IPPE_SQUARE);
} catch (const cv::Exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
continue;
}
if (!headless)
{
drawFrameAxes(frame, cameraMatrix, distCoeffs, rvec, tvec, tag.length/2.f);
// draw::drawCenterPoints(frame, markerCorners, 100);
}
// Convert rotation vector to rotation matrix
cv::Mat rotationMatrix;
cv::Rodrigues(rvec, rotationMatrix);
// std::cout << rvec << std::endl;
// std::cout << rotationMatrix << std::endl;
// Extract Euler angles from the rotation matrix
double roll, pitch, yaw;
pitch = asin(rotationMatrix.at<double>(2, 0));
roll = atan2(-rotationMatrix.at<double>(2, 1), rotationMatrix.at<double>(2, 2));
yaw = atan2(-rotationMatrix.at<double>(1, 0), rotationMatrix.at<double>(0, 0));
// Angles can be used to calculate the distance to the center of the flower.
// std::cout << roll << " " << pitch << " " << yaw << std::endl << std::endl;
cv::Mat rotaEuler = (cv::Mat_<double>(3, 1) << roll, pitch, yaw);
// Apply the homogeneous transformation to tvec
result.second.emplace_back(tag, std::make_pair(tvec, rotaEuler));
}
}
std::sort(result.second.begin(), result.second.end(), [this](const std::pair<ArucoTag, std::pair<cv::Mat, cv::Mat>>& a, const std::pair<ArucoTag, std::pair<cv::Mat, cv::Mat>>& b)
{
return distanceBetweenRobotAndTagOnXY(a.second.first) < distanceBetweenRobotAndTagOnXY(b.second.first);
});
if (!headless)
{
cv::imshow("ArUco Detection", frame);
if (cv::waitKey(10) == 27)
{
// Press 'Esc' to exit
result.first = 1;
return result;
}
}
result.first = 0;
return result;
}
/*void ArucoDetector::flowerDetector(const ArucoTag& tag, const cv::Mat& translationMatrix, const cv::Mat& rotationMatrix, Type::RobotPose* robotPose)
{
constexpr double distanceToPot = 21;
const double distanceXFlower = translationMatrix.at<double>(0, 0);// + (distanceToPot * sin(rotationMatrix.at<double>(1, 0)));
const double distanceZFlower = translationMatrix.at<double>(2, 0);// + (distanceToPot * cos(rotationMatrix.at<double>(1, 0)));
const double distanceFlower = distanceBetweenRobotAndTag(robotPose, translationMatrix);
//std::cout << tag.name << " Pos : x: " << distanceXFlower << " z: " << distanceZFlower << " " << "distance: " << distanceFlower << std::endl;
}
void ArucoDetector::solarPanelDetector(const ArucoTag& tag, cv::Mat translationMatrix, const cv::Mat& rotationMatrix, Type::RobotPose* robotPose)
{
std::cout << tag.name << " Pos : x: " << translationMatrix.at<double>(0, 0) << " z: " << translationMatrix.at<double>(2, 0) << " " << std::endl;
const auto yaw = rotationMatrix.at<double>(2, 0);
const auto rotationBaseTable = (-yaw) + robotPose->theta;
std::cout << " Rotation: " << rotationBaseTable * (180 / CV_PI) << std::endl;
if (rotationBaseTable > 70 && rotationBaseTable <= 110)
{
std::cout << "Mid" << std::endl;
}
else if (rotationBaseTable > 30 && rotationBaseTable <= 70)
{
std::cout << "Blue side" << std::endl;
}
else if (rotationBaseTable > 110 && rotationBaseTable <= 150)
{
std::cout << "Yellow side" << std::endl;
}
else
{
std::cout << "Mid" << std::endl;
}
// BLUE => 90, YELLOW => -90
}
*/