mirror of
https://github.com/BreizhHardware/TD-R.git
synced 2026-01-19 00:57:30 +01:00
fix(correct the function definition for calculating expectation): correct the function definition for calculating expectation
- Corrected the function definition `fonction_esperance` to use `f(x)` instead of `(1 - x)^4`. - Added code to calculate the integral using the rectangle method. - Added code to plot the graph of the rectangle method for the integral.
This commit is contained in:
@@ -16,8 +16,21 @@ capacite <- uniroot(function(x) F(x) - cible, lower = 0, upper = 1)$root
|
||||
print(capacite * 1000)
|
||||
# c) (Bonus) Calculer l'espérence
|
||||
fonction_esperance <- function (x) {
|
||||
x * c * (1 - x)^4
|
||||
x * c * f(x)
|
||||
}
|
||||
|
||||
esperance <- integrate(fonction_esperance, lower = 0, upper = 1)$value
|
||||
print(esperance)
|
||||
print(esperance)
|
||||
|
||||
# d) (Bonus) Faire avec la méthode des réctangle et tracer le graphique de la construction
|
||||
n <- 15
|
||||
dx <- 1 / n
|
||||
x_vals <- seq(0, 1, length.out = n)
|
||||
y_vals <- f(x_vals)
|
||||
integrale_rect <- sum(y_vals * dx)
|
||||
|
||||
print(integrale_rect)
|
||||
plot(x_vals, y_vals, type = "list", col = "blue", lwd = 2,
|
||||
main = "Methode des rectangles pour l'integrale",
|
||||
xlab = "x", ylab = "f(x)")
|
||||
rect(x_vals[-n], 0, x_vals[-1], y_vals[-n], col = rgb(0, 0, 1, 0.2), border = NA)
|
||||
Reference in New Issue
Block a user