mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
Performance fixes relating to floating point: erf and erfc
erf and erfc are missing float versions, so I import them from openlibm. erf is used from Poincare::NormalDistribution:: StandardNormalCumulativeDistributiveFunctionAtAbscissa<float>, and erfc is used (?) just from MicroPython. To clarify, if there is no float version of a function like erf, but there is a double version, C++ promotes the possible float parameter to double and soft-float hilarity ensues.
This commit is contained in:
@@ -57,6 +57,7 @@ liba_src += $(addprefix liba/src/external/openbsd/, \
|
||||
s_copysignf.c \
|
||||
s_cosf.c \
|
||||
s_erf.c \
|
||||
s_erff.c \
|
||||
s_expm1f.o\
|
||||
s_fabsf.c \
|
||||
s_fmaxf.c \
|
||||
|
||||
185
liba/src/external/openbsd/s_erff.c
vendored
Normal file
185
liba/src/external/openbsd/s_erff.c
vendored
Normal file
@@ -0,0 +1,185 @@
|
||||
/* s_erff.c -- float version of s_erf.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Taken from openlibm at 5b0e7e981321687ac0abe711fdeb30adcd9da932 and
|
||||
* modified for Numworks Epsilon by Neven Sajko <nsajko@gmail.com>
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//__FBSDID("$FreeBSD: src/lib/msun/src/s_erff.c,v 1.8 2008/02/22 02:30:35 das Exp $");
|
||||
|
||||
#include "math.h"
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const float
|
||||
tiny = 1e-30,
|
||||
half= 5.0000000000e-01, /* 0x3F000000 */
|
||||
one = 1.0000000000e+00, /* 0x3F800000 */
|
||||
two = 2.0000000000e+00, /* 0x40000000 */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
efx = 1.2837916613e-01, /* 0x3e0375d4 */
|
||||
efx8= 1.0270333290e+00, /* 0x3f8375d4 */
|
||||
/*
|
||||
* Domain [0, 0.84375], range ~[-5.4446e-10,5.5197e-10]:
|
||||
* |(erf(x) - x)/x - p(x)/q(x)| < 2**-31.
|
||||
*/
|
||||
pp0 = 1.28379166e-01F, /* 0x1.06eba8p-3 */
|
||||
pp1 = -3.36030394e-01F, /* -0x1.58185ap-2 */
|
||||
pp2 = -1.86260219e-03F, /* -0x1.e8451ep-10 */
|
||||
qq1 = 3.12324286e-01F, /* 0x1.3fd1f0p-2 */
|
||||
qq2 = 2.16070302e-02F, /* 0x1.620274p-6 */
|
||||
qq3 = -1.98859419e-03F, /* -0x1.04a626p-9 */
|
||||
/*
|
||||
* Domain [0.84375, 1.25], range ~[-1.953e-11,1.940e-11]:
|
||||
* |(erf(x) - erx) - p(x)/q(x)| < 2**-36.
|
||||
*/
|
||||
erx = 8.42697144e-01F, /* 0x1.af7600p-1. erf(1) rounded to 16 bits. */
|
||||
pa0 = 3.64939137e-06F, /* 0x1.e9d022p-19 */
|
||||
pa1 = 4.15109694e-01F, /* 0x1.a91284p-2 */
|
||||
pa2 = -1.65179938e-01F, /* -0x1.5249dcp-3 */
|
||||
pa3 = 1.10914491e-01F, /* 0x1.c64e46p-4 */
|
||||
qa1 = 6.02074385e-01F, /* 0x1.344318p-1 */
|
||||
qa2 = 5.35934687e-01F, /* 0x1.126608p-1 */
|
||||
qa3 = 1.68576106e-01F, /* 0x1.593e6ep-3 */
|
||||
qa4 = 5.62181212e-02F, /* 0x1.cc89f2p-5 */
|
||||
/*
|
||||
* Domain [1.25,1/0.35], range ~[-7.043e-10,7.457e-10]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-30
|
||||
*/
|
||||
ra0 = -9.87132732e-03F, /* -0x1.4376b2p-7 */
|
||||
ra1 = -5.53605914e-01F, /* -0x1.1b723cp-1 */
|
||||
ra2 = -2.17589188e+00F, /* -0x1.1683a0p+1 */
|
||||
ra3 = -1.43268085e+00F, /* -0x1.6ec42cp+0 */
|
||||
sa1 = 5.45995426e+00F, /* 0x1.5d6fe4p+2 */
|
||||
sa2 = 6.69798088e+00F, /* 0x1.acabb8p+2 */
|
||||
sa3 = 1.43113089e+00F, /* 0x1.6e5e98p+0 */
|
||||
sa4 = -5.77397496e-02F, /* -0x1.d90108p-5 */
|
||||
/*
|
||||
* Domain [1/0.35, 11], range ~[-2.264e-13,2.336e-13]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-42
|
||||
*/
|
||||
rb0 = -9.86494310e-03F, /* -0x1.434124p-7 */
|
||||
rb1 = -6.25171244e-01F, /* -0x1.401672p-1 */
|
||||
rb2 = -6.16498327e+00F, /* -0x1.8a8f16p+2 */
|
||||
rb3 = -1.66696873e+01F, /* -0x1.0ab70ap+4 */
|
||||
rb4 = -9.53764343e+00F, /* -0x1.313460p+3 */
|
||||
sb1 = 1.26884899e+01F, /* 0x1.96081cp+3 */
|
||||
sb2 = 4.51839523e+01F, /* 0x1.6978bcp+5 */
|
||||
sb3 = 4.72810211e+01F, /* 0x1.7a3f88p+5 */
|
||||
sb4 = 8.93033314e+00F; /* 0x1.1dc54ap+3 */
|
||||
|
||||
|
||||
float
|
||||
erff(float x)
|
||||
{
|
||||
int32_t hx,ix,i;
|
||||
float R,S,P,Q,s,y,z,r;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) { /* erf(nan)=nan */
|
||||
i = ((u_int32_t)hx>>31)<<1;
|
||||
return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
|
||||
}
|
||||
|
||||
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
||||
if(ix < 0x38800000) { /* |x|<2**-14 */
|
||||
if (ix < 0x04000000) /* |x|<0x1p-119 */
|
||||
return (8*x+efx8*x)/8; /* avoid spurious underflow */
|
||||
return x + efx*x;
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*pp2);
|
||||
s = one+z*(qq1+z*(qq2+z*qq3));
|
||||
y = r/s;
|
||||
return x + x*y;
|
||||
}
|
||||
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabsf(x)-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*pa3));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*qa4)));
|
||||
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
|
||||
}
|
||||
if (ix >= 0x40800000) { /* inf>|x|>=4 */
|
||||
if(hx>=0) return one-tiny; else return tiny-one;
|
||||
}
|
||||
x = fabsf(x);
|
||||
s = one/(x*x);
|
||||
if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*ra3));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*sa4)));
|
||||
} else { /* |x| >= 1/0.35 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*rb4)));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*sb4)));
|
||||
}
|
||||
SET_FLOAT_WORD(z,hx&0xffffe000);
|
||||
r = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
|
||||
if(hx>=0) return one-r/x; else return r/x-one;
|
||||
}
|
||||
|
||||
float
|
||||
erfcf(float x)
|
||||
{
|
||||
int32_t hx,ix;
|
||||
float R,S,P,Q,s,y,z,r;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) { /* erfc(nan)=nan */
|
||||
/* erfc(+-inf)=0,2 */
|
||||
return (float)(((u_int32_t)hx>>31)<<1)+one/x;
|
||||
}
|
||||
|
||||
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
||||
if(ix < 0x33800000) /* |x|<2**-56 */
|
||||
return one-x;
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*pp2);
|
||||
s = one+z*(qq1+z*(qq2+z*qq3));
|
||||
y = r/s;
|
||||
if(hx < 0x3e800000) { /* x<1/4 */
|
||||
return one-(x+x*y);
|
||||
} else {
|
||||
r = x*y;
|
||||
r += (x-half);
|
||||
return half - r ;
|
||||
}
|
||||
}
|
||||
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabsf(x)-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*pa3));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*qa4)));
|
||||
if(hx>=0) {
|
||||
z = one-erx; return z - P/Q;
|
||||
} else {
|
||||
z = erx+P/Q; return one+z;
|
||||
}
|
||||
}
|
||||
if (ix < 0x41300000) { /* |x|<28 */
|
||||
x = fabsf(x);
|
||||
s = one/(x*x);
|
||||
if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
||||
R=ra0+s*(ra1+s*(ra2+s*ra3));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*sa4)));
|
||||
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
||||
if(hx<0&&ix>=0x40a00000) return two-tiny;/* x < -5 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*rb4)));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*sb4)));
|
||||
}
|
||||
SET_FLOAT_WORD(z,hx&0xffffe000);
|
||||
r = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
|
||||
if(hx>0) return r/x; else return two-r/x;
|
||||
} else {
|
||||
if(hx>0) return tiny*tiny; else return two-tiny;
|
||||
}
|
||||
}
|
||||
@@ -114,6 +114,8 @@ inline constexpr float ceil(float x) { return __builtin_ceilf(x); }
|
||||
inline constexpr float copysign(float x, float y) { return __builtin_copysignf(x, y); }
|
||||
inline constexpr float cos(float x) { return __builtin_cosf(x); }
|
||||
inline constexpr float cosh(float x) { return __builtin_coshf(x); }
|
||||
inline constexpr float erf(float x) { return __builtin_erff(x); }
|
||||
inline constexpr float erfc(float x) { return __builtin_erfcf(x); }
|
||||
inline constexpr float exp(float x) { return __builtin_expf(x); }
|
||||
inline constexpr float expm1(float x) { return __builtin_expm1f(x); }
|
||||
inline constexpr float fabs(float x) { return __builtin_fabsf(x); }
|
||||
|
||||
Reference in New Issue
Block a user