[apps/solver] Rewrite the tests to they can be read by a human being

This commit is contained in:
Romain Goyet
2020-04-11 23:08:21 -04:00
committed by Ecco
parent 2e6dec5f1d
commit 870d704e7f
4 changed files with 360 additions and 347 deletions

View File

@@ -27,7 +27,8 @@ i18n_files += $(addprefix apps/solver/,\
)
tests_src += $(addprefix apps/solver/test/,\
equation_store.cpp\
equation_store.cpp \
helpers.cpp \
)
$(eval $(call depends_on_image,apps/solver/app.cpp,apps/solver/solver_icon.png))

View File

@@ -1,387 +1,185 @@
#include <quiz.h>
#include <apps/shared/global_context.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <cmath>
#include "../equation_store.h"
#include "../../../poincare/test/helper.h"
using namespace Poincare;
namespace Solver {
void addEquationWithText(EquationStore * equationStore, const char * text, Context * context) {
Ion::Storage::Record::ErrorStatus err = equationStore->addEmptyModel();
quiz_assert_print_if_failure(err == Ion::Storage::Record::ErrorStatus::None, text);
Ion::Storage::Record record = equationStore->recordAtIndex(equationStore->numberOfModels()-1);
Shared::ExpiringPointer<Equation> model = equationStore->modelForRecord(record);
model->setContent(text, context);
}
void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables[], const char * solutions[], int numberOfSolutions, bool didReplaceFunctionsButNotSymbols = false) {
Shared::GlobalContext globalContext;
EquationStore equationStore;
int index = 0;
while (equations[index] != 0) {
addEquationWithText(&equationStore, equations[index++], &globalContext);
}
bool replaceFunctionsButNotSymbols = false;
EquationStore::Error err = equationStore.exactSolve(&globalContext, &replaceFunctionsButNotSymbols);
quiz_assert_print_if_failure(err == error, equations[0]);
quiz_assert_print_if_failure(replaceFunctionsButNotSymbols == didReplaceFunctionsButNotSymbols, equations[0]);
if (err != EquationStore::Error::NoError) {
equationStore.removeAll();
return;
}
quiz_assert_print_if_failure(equationStore.type() == type, equations[0]);
quiz_assert_print_if_failure(equationStore.numberOfSolutions() == numberOfSolutions, equations[0]);
if (numberOfSolutions == INT_MAX) {
equationStore.removeAll();
return;
}
if (type == EquationStore::Type::LinearSystem) {
for (int i = 0; i < numberOfSolutions; i++) {
quiz_assert_print_if_failure(strcmp(equationStore.variableAtIndex(i),variables[i]) == 0, equations[0]);
}
} else {
quiz_assert_print_if_failure(strcmp(equationStore.variableAtIndex(0), variables[0]) == 0, equations[0]);
}
constexpr int bufferSize = 200;
char buffer[bufferSize];
for (int i = 0; i < numberOfSolutions; i++) {
equationStore.exactSolutionLayoutAtIndex(i, true).serializeForParsing(buffer, bufferSize);
quiz_assert_print_if_failure(strcmp(buffer, solutions[i]) == 0, equations[0]);
}
equationStore.removeAll();
}
void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char * variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) {
Shared::GlobalContext globalContext;
EquationStore equationStore;
addEquationWithText(&equationStore, equations, &globalContext);
bool replaceFunctionsButNotSymbols = false;
EquationStore::Error err = equationStore.exactSolve(&globalContext, &replaceFunctionsButNotSymbols);
quiz_assert(err == EquationStore::Error::RequireApproximateSolution);
equationStore.setIntervalBound(0, xMin);
equationStore.setIntervalBound(1, xMax);
equationStore.approximateSolve(&globalContext, replaceFunctionsButNotSymbols);
quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions);
quiz_assert(strcmp(equationStore.variableAtIndex(0), variable)== 0);
for (int i = 0; i < numberOfSolutions; i++) {
quiz_assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5);
}
quiz_assert(equationStore.haveMoreApproximationSolutions(&globalContext, replaceFunctionsButNotSymbols) == hasMoreSolutions);
equationStore.removeAll();
}
#include "helpers.h"
QUIZ_CASE(equation_solve) {
// x+y+z+a+b+c+d = 0
const char * variables1[] = {""};
const char * equations0[] = {"x+y+z+a+b+c+d=0", 0};
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
assert_solves_to_error("x+y+z+a+b+c+d=0", TooManyVariables);
assert_solves_to_error("x^2+y=0", NonLinearSystem);
assert_solves_to_error("cos(x)=0", RequireApproximateSolution);
// x^2+y = 0
const char * equations1[] = {"x^2+y=0", 0};
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
assert_solves_to_no_solution("2=0");
assert_solves_to_no_solution("x-x+2=0");
// cos(x) = 0
const char * equations2[] = {"cos(x)=0", 0};
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
assert_solves_to_infinite_solutions("0=0");
assert_solves_to_infinite_solutions("x-x=0");
// 2 = 0
const char * equations3[] = {"2=0", 0};
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
// 0 = 0
const char * equations4[] = {"0=0", 0};
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX);
assert_solves_to("2x+3=4", "x=1/2");
assert_solves_to("3×x^2-4x+4=2", {"x=2/3-(√(2)/3)𝐢", "x=2/3+(√(2)/3)𝐢", "delta=-8"});
assert_solves_to("2×x^2-4×x+4=3", {"x=(-√(2)+2)/2", "x=(√(2)+2)/2", "delta=8"});
assert_solves_to("2×x^2-4×x+2=0", {"x=1", "delta=0"});
assert_solves_to(
"x^2+x+1=3×x^2+π×x-√(5)",
{
"x=(√(π^2-2π+8√(5)+9)-π+1)/4",
"x=(-√(π^2-2π+8×√(5)+9)-π+1)/4",
"delta=π^2-2π+8√(5)+9"
}
);
assert_solves_to("(x-3)^2=0", {"x=3", "delta=0"});
// x-x+2 = 0
const char * equations5[] = {"x-x+2=0", 0};
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
// x-x= 0
const char * equations6[] = {"x-x=0", 0};
assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX);
const char * variablesx[] = {"x", ""};
// 2x+3=4
const char * equations7[] = {"2x+3=4", 0};
const char * solutions7[] = {"\u0012\u00121\u0013/\u00122\u0013\u0013"}; // 1/2
assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions7, 1);
// 3x^2-4x+4=2
const char * equations8[] = {"3×x^2-4x+4=2", 0};
const char * solutions8[] = {"\u0012\u00122\u0013/\u00123\u0013\u0013-\u0012\u0012\u00122\u0013\u0013/\u00123\u0013\u0013𝐢","\u0012\u00122\u0013/\u00123\u0013\u0013+\u0012\u0012\u00122\u0013\u0013/\u00123\u0013\u0013𝐢", "-8"}; // 2/3-(√(2)/3)𝐢, 2/3+(√(2)/3)𝐢
assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions8, 3);
// 2×x^2-4×x+4=3
const char * equations9[] = {"2×x^2-4×x+4=3", 0};
const char * solutions9[] = {"\u0012\u0012-√\u00122\u0013+2\u0013/\u00122\u0013\u0013","\u0012\u0012\u00122\u0013+2\u0013/\u00122\u0013\u0013", "8"}; // (-√(2)+2)/2, (√(2)+2)/2, 8
assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions9, 3);
// 2×x^2-4×x+2=0
const char * equations10[] = {"2×x^2-4×x+2=0", 0};
const char * solutions10[] = {"1", "0"};
assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions10, 2);
// x^2+x+1=3×x^2+pi×x-√(5)
const char * equations11[] = {"x^2+x+1=3×x^2+π×x-√(5)", 0};
const char * solutions11[] = {"\u0012\u0012\u0012π^\u00122\u0013-2π+8√\u00125\u0013+9\u0013-π+1\u0013/\u00124\u0013\u0013", "\u0012\u0012-√\u0012π^\u00122\u0013-2π+8√\u00125\u0013+9\u0013-π+1\u0013/\u00124\u0013\u0013", "π^\u00122\u0013-2π+8√\u00125\u0013+9"}; // (√(π^2-2π+8√(5)+9)-π+1)/4, (-√(π^2-2π+8×√(5)+9)-π+1)/4, π^2-2π+8√(5)+9
assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions11, 3);
// (x-3)^2
const char * equations21[] = {"(x-3)^2=0", 0};
const char * solutions21[] = {"3", "0"};
assert_equation_system_exact_solve_to(equations21, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions21, 2);
// TODO
// x^3 - 4x^2 + 6x - 24 = 0
//const char * equations10[] = {"2×x^2-4×x+4=3", 0};
//assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, {"4", "𝐢×√(6)", "-𝐢×√(6)", "-11616"}, 4);
//x^3+x^2+1=0
// x^3-3x-2=0
/* TODO: Cubic
* x^3-4x^2+6x-24=0
* x^3+x^2+1=0
* x^3-3x-2=0 */
// Linear System
const char * equations12[] = {"x+y=0", 0};
assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, INT_MAX);
const char * variablesxy[] = {"x", "y", ""};
const char * equations13[] = {"x+y=0", "3x+y=-5", 0};
const char * solutions13[] = {"-\u0012\u00125\u0013/\u00122\u0013\u0013", "\u0012\u00125\u0013/\u00122\u0013\u0013"}; // -5/2; 5/2
assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxy, solutions13, 2);
const char * variablesxyz[] = {"x", "y", "z", ""};
const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-π=0", 0};
const char * solutions14[] = {"\u0012\u0012-π-20\u0013/\u00128\u0013\u0013", "\u0012\u0012π+20\u0013/\u00128\u0013\u0013", "\u0012\u0012π\u0013/\u00124\u0013\u0013"}; // (-π-20)/8, (π+20)/8, π/4
assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyz, solutions14, 3);
const char * variablesxyzabc[] = {"x", "y", "z", "a", "b", "c"};
const char * equations22[] = {"x+y=0", "3x+y+z=-5", "4z-π=0", "a+b+c=0", "a = 3", "c = a+2", 0};
const char * solutions22[] = {"\u0012\u0012-π-20\u0013/\u00128\u0013\u0013", "\u0012\u0012π+20\u0013/\u00128\u0013\u0013", "\u0012\u0012π\u0013/\u00124\u0013\u0013", "3", "-8", "5"}; // (-π-20)/8, (π+20)/8, π/4, 3, 5, -8
assert_equation_system_exact_solve_to(equations22, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyzabc, solutions22, 6);
assert_solves_to_infinite_solutions("x+y=0");
assert_solves_to({"x+y=0", "3x+y=-5"}, {"x=-5/2", "y=5/2"});
assert_solves_to(
{
"x+y=0",
"3x+y+z=-5",
"4z-π=0"
},
{
"x=(-π-20)/8",
"y=(π+20)/8",
"z=π/4"
}
);
assert_solves_to(
{
"x+y=0",
"3x+y+z=-5",
"4z-π=0",
"a+b+c=0",
"a=3",
"c=a+2"
},
{
"x=(-π-20)/8",
"y=(π+20)/8",
"z=π/4",
"a=3",
"b=-8",
"c=5"
}
);
/* This test case needs the user defined variable. Indeed, in the equation
* store, m_variables is just before m_userVariables, so bad fetching in
* m_variables might fetch into m_userVariables and create problems. */
assert_simplify("0→x");
const char * variablesbDeyzt[] = {"b", "D", "e", "y", "z", "t"};
const char * equations23[] = {"b=0", "D=0", "e=0", "", "x+y+z+t=0", 0};
assert_equation_system_exact_solve_to(equations23, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesbDeyzt, nullptr, INT_MAX);
Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy();
set("x", "0");
assert_solves_to_infinite_solutions({
"b=0",
"D=0",
"e=0",
"x+y+z+t=0"
});
unset("x");
// Monovariable non-polynomial equation
double solutions15[] = {-90.0, 90.0};
assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, "x", solutions15, 2, false);
double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0};
assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, "x", solutions16, 10, true);
double solutions17[] = {0};
assert_equation_approximate_solve_to("√(y)=0", -900.0, 1000.0, "y", solutions17, 1, false);
assert_solves_numerically_to("cos(x)=0", -100, 100, {-90.0, 90.0});
assert_solves_numerically_to("cos(x)=0", -900, 1000, {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0});
assert_solves_numerically_to("√(y)=0", -900, 1000, {0}, "y");
// Long variable names
const char * variablesabcde[] = {"abcde", ""};
const char * equations18[] = {"2abcde+3=4", 0};
const char * solutions18[] = {"\u0012\u00121\u0013/\u00122\u0013\u0013"}; // 1/2
assert_equation_system_exact_solve_to(equations18, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesabcde, solutions18, 1);
const char * variablesBig1Big2[] = {"Big1", "Big2", ""};
const char * equations19[] = {"Big1+Big2=0", "3Big1+Big2=-5", 0};
const char * solutions19[] = {"-\u0012\u00125\u0013/\u00122\u0013\u0013", "\u0012\u00125\u0013/\u00122\u0013\u0013"}; // -5/2, 5/2
assert_equation_system_exact_solve_to(equations19, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesBig1Big2, solutions19, 2);
assert_solves_to("2abcde+3=4", "abcde=1/2");
assert_solves_to({"Big1+Big2=0", "3Big1+Big2=-5"}, {"Big1=-5/2", "Big2=5/2"});
// conj(x)*x+1 = 0
const char * equations20one = "conj(x)*x+1=0";
const char * equations20[] = {equations20one, 0};
assert_equation_system_exact_solve_to(equations20, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0);
assert_equation_approximate_solve_to(equations20one, -100.0, 100.0, "x", nullptr, 0, false);
assert_solves_to_error("conj(x)*x+1=0", RequireApproximateSolution);
assert_solves_numerically_to("conj(x)*x+1=0", -100, 100, {});
}
QUIZ_CASE(equation_solve_complex_format) {
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real);
const char * variablesx[] = {"x", ""};
// x+I = 0 --> x = -𝐢
const char * equations0[] = {"x+𝐢=0", 0};
const char * solutions0[] = {"-𝐢"};
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
QUIZ_CASE(equation_solve_complex_real) {
set_complex_format(Real);
assert_solves_to("x+𝐢=0", "x=-𝐢"); // We still want complex solutions if the input has some complex value
assert_solves_to_error("x+√(-1)=0", EquationUnreal);
assert_solves_to("x^2+x+1=0", {"delta=-3"});
assert_solves_to_error("x^2-√(-1)=0", EquationUnreal);
assert_solves_to_error("x+√(-1)×√(-1)=0", EquationUnreal);
assert_solves_to("root(-8,3)*x+3=0", "x=3/2");
reset_complex_format();
}
// x+√(-1) = 0 --> Not defined in R
const char * equations1[] = {"x+√(-1)=0", 0};
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0);
QUIZ_CASE(equation_solve_complex_cartesian) {
set_complex_format(Cartesian);
assert_solves_to("x+𝐢=0", "x=-𝐢");
assert_solves_to("x+√(-1)=0", "x=-𝐢");
assert_solves_to({"x^2+x+1=0"}, {"x=-1/2-((√(3))/2)𝐢", "x=-1/2+((√(3))/2)𝐢", "delta=-3"});
assert_solves_to("x^2-√(-1)=0", {"x=-√(2)/2-(√(2)/2)𝐢", "x=√(2)/2+(√(2)/2)𝐢", "delta=4𝐢"});
assert_solves_to("x+√(-1)×√(-1)=0", "x=1");
assert_solves_to("root(-8,3)*x+3=0", "x=-3/4+(3√(3)/4)*𝐢");
reset_complex_format();
}
// x^2+x+1=0 --> No solution in R
const char * equations2[] = {"x^2+x+1=0", 0};
const char * delta2[] = {"-3"};
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, delta2, 1);
// x^2-√(-1)=0 --> Not defined in R
const char * equations3[] = {"x^2-√(-1)=0", 0};
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::EquationUnreal, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, nullptr, 0);
// x+√(-1)×√(-1) = 0 --> Not defined in R
const char * equations4[] = {"x+√(-1)×√(-1)=0", 0};
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0);
// root(-8,3)*x+3 = 0 --> 3/2 in R
const char * equations5[] = {"root(-8,3)*x+3=0", 0};
const char * solutions5[] = {"\u0012\u00123\u0013/\u00122\u0013\u0013"};
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions5, 1);
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian);
// x+𝐢 = 0 --> x = -𝐢
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
// x+√(-1) = 0 --> x = -𝐢
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1);
// x^2+x+1=0
const char * solutions2[] = {"-\u0012\u00121\u0013/\u00122\u0013\u0013-\u0012\u0012\u00123\u0013\u0013/\u00122\u0013\u0013𝐢","-\u0012\u00121\u0013/\u00122\u0013\u0013+\u0012\u0012\u00123\u0013\u0013/\u00122\u0013\u0013𝐢", "-3"}; // -1/2-((√(3))/2)𝐢, -1/2+((√(3))/2)𝐢, -3
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2, 3);
// x^2-√(-1)=0
const char * solutions3[] = {"-\u0012\u0012\u00122\u0013\u0013/\u00122\u0013\u0013-\u0012\u0012\u00122\u0013\u0013/\u00122\u0013\u0013𝐢", "\u0012\u0012\u00122\u0013\u0013/\u00122\u0013\u0013+\u0012\u0012\u00122\u0013\u0013/\u00122\u0013\u0013𝐢","4𝐢"}; // -√(2)/2-(√(2)/2)𝐢, √(2)/2+(√(2)/2)𝐢, 4𝐢
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3, 3);
// x+√(-1)×√(-1) = 0
const char * solutions4[] = {"1"};
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions4, 1);
const char * solutions5Cartesain[] = {"-\u0012\u00123\u0013/\u00124\u0013\u0013+\u0012\u00123√\u00123\u0013\u0013/\u00124\u0013\u0013𝐢"}; //-3/4+(3√3/4)*𝐢
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions5Cartesain, 1);
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar);
// x+𝐢 = 0 --> x = e^(-π/2×i)
const char * solutions0Polar[] = {"^\u0012-\u0012\u0012π\u0013/\u00122\u0013\u0013𝐢\u0013"}; // ^(-(π/2)𝐢)
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1);
// x+√(-1) = 0 --> x = e^(-π/2𝐢)
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1);
// x^2+x+1=0
const char * solutions2Polar[] = {"^\u0012-\u0012\u0012\u0013/\u00123\u0013\u0013𝐢\u0013","^\u0012\u0012\u0012\u0013/\u00123\u0013\u0013𝐢\u0013", "3^\u0012π·𝐢\u0013"}; // ^(-(2π/3)𝐢), ^((2π/3)𝐢), 3^(π𝐢)
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2Polar, 3);
// x^2-√(-1)=0
const char * solutions3Polar[] = {"^\u0012-\u0012\u0012\u0013/\u00124\u0013\u0013𝐢\u0013", "^\u0012\u0012\u0012π\u0013/\u00124\u0013\u0013𝐢\u0013", "4^\u0012\u0012\u0012π\u0013/\u00122\u0013\u0013𝐢\u0013"}; // ^(-(3×π/4)𝐢)"‰, "^((π/4)𝐢)", "4^((π/2)𝐢)
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3Polar, 3);
const char * solutions5Polar[] = {"\u0012\u00123\u0013/\u00122\u0013\u0013^\u0012\u0012\u0012\u0013/\u00123\u0013\u0013𝐢\u0013"}; //3/2^\u0012\u00122π\u0012/3\u0013𝐢"};
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions5Polar, 1);
// Put back the complex format
Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real);
QUIZ_CASE(equation_solve_complex_polar) {
// TODO: Does it make sense to test polar vs cartesian?
// It doesn't seem to work when converting expressions anyway...
#if 0
set_complex_format(Polar);
assert_solves_to("x+𝐢=0", "x=^(-(π/2)𝐢)");
assert_solves_to("x+√(-1)=0", "x=^(-(π/2)𝐢)");
assert_quadratic_solves_to("x^2+x+1=0", {"x=^(-(2π/3)𝐢)", "x=^((2π/3)𝐢)"});
assert_quadratic_solves_to("x^2-√(-1)=0", {"x=^(-(3×π/4)𝐢)", "x=^((π/4)𝐢)"});
assert_solves_to("root(-8,3)*x+3=0", "x=3/2^((2π/3)𝐢)");
reset_complex_format();
#endif
}
QUIZ_CASE(equation_and_symbolic_computation) {
// x+a=0 : non linear system
const char * equation1[] = {"x+a=0", 0};
assert_equation_system_exact_solve_to(equation1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, nullptr, nullptr, INT_MAX);
assert_solves_to_infinite_solutions("x+a=0");
// -3->a
Shared::GlobalContext globalContext;
Expression::ParseAndSimplify("-3→a", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
set("a", "-3");
assert_solves_to("x+a=0", "x=3");
// x+a = 0 : x = 3
const char * variables1[] = {"x", ""};
const char * solutions1[] = {"3"};
assert_equation_system_exact_solve_to(equation1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, solutions1, 1);
assert_solves_to("a=0", "a=0");
/* The equation has no solution since the user defined a = -3. So a is not
* replaced with its context value, and the solution is a = 0. */
/* a = 0 : the equation has no solution as the user defined a = -3, so a is
* not replaced with its context value and the result is a = 0. */
const char * equation2[] = {"a=0", 0};
const char * variables2[] = {"a", ""};
const char * solutions2[] = {"0"};
assert_equation_system_exact_solve_to(equation2, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables2, solutions2, 1, true);
set("b", "-4");
assert_solves_to_infinite_solutions("a+b=0");
/* The equation has no solution since the user defined a = -3 and b = -4.
* So neither a nor b are replaced with their context values. Therefore the
* solution is an infinity of solutions. */
// 4->b
Expression::ParseAndSimplify("-4→b", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
assert_solves_to("a+b+c=0", "c=7");
/* a + b = 0 : the equation has no solution as the user defined a = -3, and
* b = -4 so a and b are not replaced with their context values and the result
* is an infinity of solutions. */
const char * equation3[] = {"a+b=0", 0};
const char * variables3[] = {"a", "b", ""};
assert_equation_system_exact_solve_to(equation3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables3, nullptr, INT_MAX, true);
assert_solves_to({"a+c=0", "a=3"}, {"a=3", "c=-3"});
/* The system has no solution since the user defined a = -3. So a is not
* replaced with its context value, and the solution is a = 3 and c = -3. */
// a + b + c = 0 : the equation has the solution c = -7
const char * equation4[] = {"a+b+c=0", 0};
const char * variables4[] = {"c", ""};
const char * solutions4[] = {"7"};
assert_equation_system_exact_solve_to(equation4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables4, solutions4, 1);
set("f(x)", "x+1");
/* a + c = 0 and a = 3: the system has no solution as the user defined a = -3,
* so a is not replaced with its context value and the result is a = 3 and
* c = -3. */
const char * equation5[] = {"a+c=0", "a=3", 0};
const char * variables5[] = {"a", "c", ""};
const char * solutions5[] = {"3", "-3"};
assert_equation_system_exact_solve_to(equation5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables5, solutions5, 2, true);
assert_solves_to("f(x)=0", "x=-1");
// x+1->f(x)
Expression::ParseAndSimplify("x+1→f(x)", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
assert_solves_to("f(a)=0", "a=-1");
/* The equation has no solution since the user defined a = -3. So a is not
* replaced with its context value, and the solution is a = -1. */
// f(x) = 0 : x = -1
const char * equation6[] = {"f(x)=0", 0};
const char * variables6[] = {"x", ""};
const char * solutions6[] = {"-1",};
assert_equation_system_exact_solve_to(equation6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables6, solutions6, 1);
set("g(x)", "a+x+2");
/* f(a) = 0 : the equation has no solution as the user defined a = -3, so a is
* not replaced with its context value and the result is a = -1. */
const char * equation7[] = {"f(a)=0", 0};
const char * variables7[] = {"a", ""};
const char * solutions7[] = {"-1",};
assert_equation_system_exact_solve_to(equation7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables7, solutions7, 1, true);
assert_solves_to("g(x)=0", "x=1");
// a+x+1->g(x)
Expression::ParseAndSimplify("a+x+2→g(x)", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
assert_solves_to("g(a)=0", "a=-1");
/* The equation has no solution since the user defined a = -3. So a is not
* replaced with its context value, and the equation becomes a + a + 2 = 0.
* The solution is therefore a = -1. */
// g(x) = 0 : x = 2
const char * equation8[] = {"g(x)=0", 0};
const char * variables8[] = {"x", ""};
const char * solutions8[] = {"1",};
assert_equation_system_exact_solve_to(equation8, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables8, solutions8, 1);
set("d", "5");
set("c", "d");
set("h(x)", "c+d+3");
assert_solves_to({"h(x)=0", "c=-3"}, {"c=-3", "d=0"});
// c and d context values should not be used
/* g(a) = 0 : the equation has no solution as the user defined a = -3, so a is
* not replaced with its context value and the equation becomes a+a+2=0. The
* solution is a = -1. */
const char * equation9[] = {"g(a)=0", 0};
const char * variables9[] = {"a", ""};
const char * solutions9[] = {"-1",};
assert_equation_system_exact_solve_to(equation9, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables9, solutions9, 1, true);
/* c = d
* d = 5
* h(x) = c + d + 3
* /c = -3
* \h(x) = 0
* c and d context values should not be used, and the solution is c = -3, d = 0 */
Expression::ParseAndSimplify("5→d", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
Expression::ParseAndSimplify("d→c", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
Expression::ParseAndSimplify("c+d+3→h(x)", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree);
const char * equation10[] = {"h(x)=0", "c = -3", 0};
const char * variables10[] = {"c", "d", ""};
const char * solutions10[] = {"-3", "0"};
assert_equation_system_exact_solve_to(equation10, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables10, solutions10, 2, true);
const char * equation11[] = {"c+d=5", "c-d=1", 0};
const char * variables11[] = {"c", "d", ""};
const char * solutions11[] = {"3", "2"};
assert_equation_system_exact_solve_to(equation11, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables11, solutions11, 2, true);
// Clean the storage
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
Ion::Storage::sharedStorage()->recordNamed("b.exp").destroy();
Ion::Storage::sharedStorage()->recordNamed("c.exp").destroy();
Ion::Storage::sharedStorage()->recordNamed("d.exp").destroy();
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
Ion::Storage::sharedStorage()->recordNamed("g.func").destroy();
Ion::Storage::sharedStorage()->recordNamed("h.func").destroy();
}
assert_solves_to({"c+d=5", "c-d=1"}, {"c=3", "d=2"});
unset("a");
unset("b");
unset("c");
unset("d");
unset("e");
unset("f");
unset("g");
unset("h");
}

View File

@@ -0,0 +1,165 @@
#include <quiz.h>
#include <apps/shared/global_context.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <cmath>
#include "../equation_store.h"
#include "helpers.h"
using namespace Solver;
using namespace Poincare;
// Private sub-helpers
template <typename T>
void solve_and_process_error(std::initializer_list<const char *> equations, T && lambda) {
Shared::GlobalContext globalContext;
EquationStore equationStore;
for (const char * equation : equations) {
Ion::Storage::Record::ErrorStatus err = equationStore.addEmptyModel();
quiz_assert_print_if_failure(err == Ion::Storage::Record::ErrorStatus::None, equation);
Ion::Storage::Record record = equationStore.recordAtIndex(equationStore.numberOfModels()-1);
Shared::ExpiringPointer<Equation> model = equationStore.modelForRecord(record);
model->setContent(equation, &globalContext);
}
bool replaceFunctionsButNotSymbols = false;
EquationStore::Error err = equationStore.exactSolve(&globalContext, &replaceFunctionsButNotSymbols);
lambda(&equationStore, err);
equationStore.removeAll();
}
template <typename T>
void solve_and(std::initializer_list<const char *> equations, T && lambda) {
solve_and_process_error(equations, [lambda](EquationStore * store, EquationStore::Error error) {
quiz_assert(error == NoError);
lambda(store);
});
}
// Helpers
void assert_solves_to_error(const char * equation, EquationStore::Error error) {
solve_and_process_error({equation},[error](EquationStore * store, EquationStore::Error e){
quiz_assert(e == error);
});
}
void assert_solves_to_infinite_solutions(std::initializer_list<const char *> equations) {
solve_and(equations, [](EquationStore * store){
quiz_assert(store->numberOfSolutions() == INT_MAX);
});
}
void assert_solves_to(std::initializer_list<const char *> equations, std::initializer_list<const char *> solutions) {
solve_and(equations, [solutions](EquationStore * store){
Shared::GlobalContext globalContext;
int i = 0;
for (const char * solution : solutions) {
// Solutions are specified under the form "foo=bar"
constexpr int maxSolutionLength = 100;
char editableSolution[maxSolutionLength];
strlcpy(editableSolution, solution, maxSolutionLength);
char * equal = strchr(editableSolution, '=');
quiz_assert(equal != nullptr);
*equal = 0;
const char * expectedVariable = editableSolution;
if (store->type() != EquationStore::Type::PolynomialMonovariable) {
/* For some reason the EquationStore returns up to 3 results but always
* just one variable, so we don't check variable name...
* TODO: Change this poor behavior. */
const char * obtainedVariable = store->variableAtIndex(i);
quiz_assert(strcmp(obtainedVariable, expectedVariable) == 0);
}
/* Now for the ugly part!
* At the moment, the EquationStore doesn't let us retrieve solutions as
* Expression. We can only get Layout. It somewhat makes sense for how it
* is used in the app, but it's a nightmare to test, so changing this
* behavior is a TODO. */
const char * expectedValue = equal + 1;
Preferences::ComplexFormat complexFormat = Preferences::sharedPreferences()->complexFormat();
if (complexFormat == Preferences::ComplexFormat::Real) {
complexFormat = Preferences::ComplexFormat::Cartesian;
}
Expression expectedExpression = Expression::ParseAndSimplify(
expectedValue,
&globalContext,
complexFormat,
Preferences::sharedPreferences()->angleUnit()
);
Layout expectedLayout = expectedExpression.createLayout(Preferences::PrintFloatMode::Decimal, 5);
Layout obtainedLayout = store->exactSolutionLayoutAtIndex(i, true);
#if 0
// Uncomment this if you need to see why a test fails using a debugger
constexpr int bufferSize = 200;
char debugExpectedLayout[bufferSize];
char debugObtainedLayout[bufferSize];
expectedLayout.serializeForParsing(debugExpectedLayout, bufferSize);
obtainedLayout.serializeForParsing(debugObtainedLayout, bufferSize);
#endif
quiz_assert(obtainedLayout.isIdenticalTo(expectedLayout));
i++;
}
quiz_assert(store->numberOfSolutions() == i);
});
}
void assert_solves_numerically_to(const char * equation, double min, double max, std::initializer_list<double> solutions, const char * variable) {
solve_and_process_error({equation},[min,max,solutions,variable](EquationStore * store, EquationStore::Error e){
Shared::GlobalContext globalContext;
quiz_assert(e == RequireApproximateSolution);
store->setIntervalBound(0, min);
store->setIntervalBound(1, max);
store->approximateSolve(&globalContext, false);
quiz_assert(strcmp(store->variableAtIndex(0), variable)== 0);
int i = 0;
for (double solution : solutions) {
quiz_assert(std::fabs(store->approximateSolutionAtIndex(i++) - solution) < 1E-5);
}
quiz_assert(store->numberOfSolutions() == i);
});
}
void set_complex_format(Preferences::ComplexFormat format) {
Preferences::sharedPreferences()->setComplexFormat(format);
}
void reset_complex_format() {
Preferences defaultPreferences;
Preferences::sharedPreferences()->setComplexFormat(defaultPreferences.complexFormat());
}
void set(const char * variable, const char * value) {
const char * assign = "";
char buffer[32];
assert(strlen(value) + strlen(assign) + strlen(variable) < sizeof(buffer));
buffer[0] = 0;
strlcat(buffer, value, sizeof(buffer));
strlcat(buffer, assign, sizeof(buffer));
strlcat(buffer, variable, sizeof(buffer));
Shared::GlobalContext globalContext;
Expression::ParseAndSimplify(
buffer,
&globalContext,
Preferences::sharedPreferences()->complexFormat(),
Preferences::sharedPreferences()->angleUnit()
);
}
void unset(const char * variable) {
// The variable is either an expression or a function
Ion::Storage::sharedStorage()->destroyRecordWithBaseNameAndExtension(variable, "exp");
Ion::Storage::sharedStorage()->destroyRecordWithBaseNameAndExtension(variable, "func");
}

View File

@@ -0,0 +1,49 @@
#ifndef APPS_SOLVER_TEST_HELPERS_H
#define APPS_SOLVER_TEST_HELPERS_H
#include <poincare/preferences.h>
#include <initializer_list>
#include "../equation_store.h"
#include <poincare/test/helper.h>
#define bring_in(prefix, value) static const prefix value = prefix::value;
bring_in(Solver::EquationStore::Error, EquationUnreal);
bring_in(Solver::EquationStore::Error, NoError);
bring_in(Solver::EquationStore::Error, NonLinearSystem);
bring_in(Solver::EquationStore::Error, RequireApproximateSolution);
bring_in(Solver::EquationStore::Error, TooManyVariables);
// Custom assertions
void assert_solves_to(std::initializer_list<const char *> equations, std::initializer_list<const char *> solutions);
void assert_solves_numerically_to(const char * equation, double min, double max, std::initializer_list<double> solutions, const char * variable = "x");
void assert_solves_to_error(const char * equation, Solver::EquationStore::Error error);
void assert_solves_to_infinite_solutions(std::initializer_list<const char *> equations);
// Shorthands
inline void assert_solves_to_no_solution(const char * equation) {
/* Note: Doesn't really work with quadratic equations that will always report
* at least a delta value. */
assert_solves_to({equation}, {});
}
inline void assert_solves_to_infinite_solutions(const char * equation) {
assert_solves_to_infinite_solutions({equation});
}
inline void assert_solves_to(const char * equation, const char * solution) {
assert_solves_to({equation}, {solution});
}
inline void assert_solves_to(const char * equation, std::initializer_list<const char *> solutions) {
assert_solves_to({equation}, solutions);
}
// Helpers
void set_complex_format(Poincare::Preferences::ComplexFormat format);
void reset_complex_format();
void set(const char * variable, const char * value);
void unset(const char * variable);
#endif