[python/turtle] Use a Turtle class

This commit is contained in:
Romain Goyet
2018-11-16 15:31:31 +01:00
parent fe076d0578
commit a9091c933b
11 changed files with 376 additions and 248 deletions

View File

@@ -13,6 +13,7 @@ public:
// Pixel manipulation
void setPixel(KDPoint p, KDColor c);
KDColor getPixel(KDPoint p);
void getPixels(KDRect r, KDColor * pixels);
// Text
KDPoint drawString(const char * text, KDPoint p, const KDFont * font = KDFont::LargeFont, KDColor textColor = KDColorBlack, KDColor backgroundColor = KDColorWhite, int maxLength = -1);
@@ -22,7 +23,7 @@ public:
// Rect
void fillRect(KDRect rect, KDColor color);
void fillRectWithPixels(KDRect rect, const KDColor * pixels, KDColor * workingBuffer, KDColor * prevPixels = nullptr);
void fillRectWithPixels(KDRect rect, const KDColor * pixels, KDColor * workingBuffer);
void blendRectWithMask(KDRect rect, KDColor color, const uint8_t * mask, KDColor * workingBuffer);
void strokeRect(KDRect rect, KDColor color);
protected:

View File

@@ -16,3 +16,8 @@ KDColor KDContext::getPixel(KDPoint p) {
}
return KDColorBlack;
}
void KDContext::getPixels(KDRect r, KDColor * pixels) {
KDRect rect = r.translatedBy(m_origin);
pullRect(rect, pixels);
}

View File

@@ -14,7 +14,7 @@ void KDContext::fillRect(KDRect rect, KDColor color) {
}
/* Note: we support the case where workingBuffer IS equal to pixels */
void KDContext::fillRectWithPixels(KDRect rect, const KDColor * pixels, KDColor * workingBuffer, KDColor * prevPixels) {
void KDContext::fillRectWithPixels(KDRect rect, const KDColor * pixels, KDColor * workingBuffer) {
KDRect absoluteRect = absoluteFillRect(rect);
if (absoluteRect.isEmpty()) {
@@ -27,9 +27,6 @@ void KDContext::fillRectWithPixels(KDRect rect, const KDColor * pixels, KDColor
* continuous area. */
if (absoluteRect.width() == rect.width() && absoluteRect.height() == rect.height()) {
if (prevPixels) {
pullRect(absoluteRect, prevPixels);
}
pushRect(absoluteRect, pixels);
return;
}
@@ -50,9 +47,6 @@ void KDContext::fillRectWithPixels(KDRect rect, const KDColor * pixels, KDColor
for (KDCoordinate j=0; j<absoluteRect.height(); j++) {
KDRect absoluteRow = KDRect(absoluteRect.x(), absoluteRect.y()+j, absoluteRect.width(), 1);
KDColor * rowPixels = (KDColor *)pixels+startingI+rect.width()*(startingJ+j);
if (prevPixels) {
pullRect(absoluteRow, prevPixels + startingI+rect.width()*(startingJ+j));
}
pushRect(absoluteRow, rowPixels);
}
} else {

View File

@@ -135,6 +135,7 @@ port_objs += $(addprefix python/port/,\
mod/time/modtime_table.o \
mod/turtle/modturtle.o \
mod/turtle/modturtle_table.o \
mod/turtle/turtle.o \
mphalport.o \
)
@@ -165,7 +166,7 @@ $(py_objs): SFLAGS := $(subst -Os,-O0,$(SFLAGS))
endif
# Icon dependency
python/port/mod/turtle/modturtle.cpp: python/port/mod/turtle/turtle_icon.o
python/port/mod/turtle/turtle.cpp: python/port/mod/turtle/turtle_icon.o
# QSTR generation

View File

@@ -1,303 +1,108 @@
extern "C" {
#include "modturtle.h"
}
#include "../../helpers.h"
#include <kandinsky.h>
#include <ion.h>
#include <math.h>
#include "port.h"
#include "turtle_icon.h"
#include "turtle.h"
constexpr mp_float_t t_heading_offset = M_PI_2;
constexpr mp_float_t t_heading_scale = M_PI / 180;
constexpr int t_x_offset = Ion::Display::Width / 2;
constexpr int t_y_offset = (Ion::Display::Height-18) / 2;
constexpr int t_size = 9;
constexpr int t_icons = 8;
constexpr KDPoint t_icon_offset(-t_size/2 + 1, -t_size/2 + 1);
constexpr KDSize t_icon_size(t_size, t_size);
static KDColor t_color;
static mp_float_t t_heading;
static mp_float_t t_x, t_y;
static bool t_penup;
static bool t_hidden;
static int t_speed;
static int t_dotsize;
static int t_mileage;
static bool t_drawn;
static KDColor *t_underneath;
static KDColor *t_icon;
static uint8_t *t_dot;
static KDPoint pos_turtle(mp_float_t x, mp_float_t y) {
return KDPoint(round(x + t_x_offset), round(y + t_y_offset));
}
void draw_turtle() {
MicroPython::ExecutionEnvironment::currentExecutionEnvironment()->displaySandbox();
int frame = (int)((t_heading / (2*M_PI)) * t_icons + 0.5);
if (frame < 0) {
frame = t_icons - ((-frame) % t_icons) - 1;
}
else {
frame = frame % t_icons;
}
int offset = frame * (t_size*t_size);
if (!t_hidden) {
KDIonContext::sharedContext()->fillRectWithPixels(KDRect(pos_turtle(t_x, t_y).translatedBy(t_icon_offset), t_icon_size), &t_icon[offset], nullptr, t_drawn ? nullptr : t_underneath);
t_drawn = true;
}
if (t_mileage > 1000) {
if (t_speed > 0) {
micropython_port_interruptible_msleep(8 * (8 - t_speed));
t_mileage -= 1000;
}
else {
t_mileage = 0;
}
}
}
void erase_turtle() {
if (t_drawn) {
KDIonContext::sharedContext()->fillRectWithPixels(KDRect(pos_turtle(t_x, t_y).translatedBy(t_icon_offset), t_icon_size), t_underneath, nullptr);
t_drawn = false;
}
}
void dot_turtle(mp_float_t x, mp_float_t y) {
MicroPython::ExecutionEnvironment::currentExecutionEnvironment()->displaySandbox();
if (!t_penup) {
KDColor colors[t_dotsize*t_dotsize];
KDRect rect(pos_turtle(x, y).translatedBy(KDPoint(-t_dotsize/2, -t_dotsize/2)), KDSize(t_dotsize, t_dotsize));
KDIonContext::sharedContext()->blendRectWithMask(rect, t_color, t_dot, colors);
}
if (t_speed > 0) {
t_mileage += sqrt((x - t_x) * (x - t_x) + (y - t_y) * (y - t_y)) * 1000;
}
micropython_port_should_interrupt();
t_x = x;
t_y = y;
}
static Turtle sTurtle;
mp_obj_t modturtle_forward(mp_obj_t px) {
mp_float_t x = t_x + mp_obj_get_float(px)*sin(t_heading);
mp_float_t y = t_y + mp_obj_get_float(px)*cos(t_heading);
modturtle_moveto(x, y);
sTurtle.forward(mp_obj_get_float(px));
return mp_const_none;
}
mp_obj_t modturtle_backward(mp_obj_t px) {
return modturtle_forward(mp_obj_new_float(-mp_obj_get_float(px)));
sTurtle.backward(mp_obj_get_float(px));
return mp_const_none;
}
mp_obj_t modturtle_right(mp_obj_t angle) {
return modturtle_left(mp_obj_new_float(-mp_obj_get_float(angle)));
sTurtle.right(mp_obj_get_float(angle));
return mp_const_none;
}
mp_obj_t modturtle_left(mp_obj_t angle) {
mp_float_t new_angle = ((t_heading - t_heading_offset) + (mp_obj_get_float(angle) * t_heading_scale)) / t_heading_scale;
return modturtle_setheading(mp_obj_new_float(new_angle));
sTurtle.left(mp_obj_get_float(angle));
return mp_const_none;
}
mp_obj_t modturtle_goto(size_t n_args, const mp_obj_t *args) {
mp_float_t newx, newy;
mp_float_t x = 0;
mp_float_t y = 0;
if (n_args == 1) {
mp_obj_t *mp_coords;
mp_obj_t * mp_coords;
mp_obj_get_array_fixed_n(args[0], 2, &mp_coords);
newx = mp_obj_get_float(mp_coords[0]);
newy = mp_obj_get_float(mp_coords[1]);
x = mp_obj_get_float(mp_coords[0]);
y = mp_obj_get_float(mp_coords[1]);
}
else {
newx = mp_obj_get_float(args[0]);
newy = mp_obj_get_float(args[1]);
x = mp_obj_get_float(args[0]);
y = mp_obj_get_float(args[1]);
}
modturtle_moveto(newx, newy);
sTurtle.goTo(x, y);
return mp_const_none;
}
mp_obj_t modturtle_setheading(mp_obj_t angle) {
micropython_port_should_interrupt();
t_heading = mp_obj_get_float(angle) * t_heading_scale + t_heading_offset;
Ion::Display::waitForVBlank();
erase_turtle();
draw_turtle();
sTurtle.setHeading(mp_obj_get_float(angle));
return mp_const_none;
}
mp_obj_t modturtle_speed(mp_obj_t speed) {
int new_speed = mp_obj_get_int(speed);
if (new_speed < 0) {
new_speed = 0;
}
else if (new_speed > 10) {
new_speed = 10;
}
t_speed = new_speed;
sTurtle.setSpeed(mp_obj_get_int(speed));
return mp_const_none;
}
mp_obj_t modturtle_position() {
mp_obj_t mp_pos[2];
mp_pos[0] = mp_obj_new_float(t_x);
mp_pos[1] = mp_obj_new_float(t_y);
mp_pos[0] = mp_obj_new_float(sTurtle.x());
mp_pos[1] = mp_obj_new_float(sTurtle.y());
return mp_obj_new_tuple(2, mp_pos);
}
mp_obj_t modturtle_heading() {
return mp_obj_new_float((t_heading - t_heading_offset) / t_heading_scale);
return mp_obj_new_float(sTurtle.heading());
}
mp_obj_t modturtle_pendown() {
t_penup = false;
sTurtle.setPenDown(true);
return mp_const_none;
}
mp_obj_t modturtle_penup() {
t_penup = true;
sTurtle.setPenDown(false);
return mp_const_none;
}
mp_obj_t modturtle_pensize(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
return MP_OBJ_NEW_SMALL_INT(t_dotsize);
return MP_OBJ_NEW_SMALL_INT(sTurtle.penSize());
}
int size = mp_obj_get_int(args[0]);
if (size < 1) {
size = 1;
}
else if (size > 10) {
size = 10;
}
modturtle_initpen(size);
sTurtle.setPenSize(mp_obj_get_int(args[0]));
return mp_const_none;
}
mp_obj_t modturtle_isdown() {
return t_penup ? mp_const_false : mp_const_true;
return sTurtle.isPenDown() ? mp_const_true : mp_const_false;
}
mp_obj_t modturtle_color(mp_obj_t r, mp_obj_t g, mp_obj_t b) {
t_color = KDColor::RGB888(mp_obj_get_int(r), mp_obj_get_int(g), mp_obj_get_int(b));
sTurtle.setColor(KDColor::RGB888(mp_obj_get_int(r), mp_obj_get_int(g), mp_obj_get_int(b)));
return mp_const_none;
}
mp_obj_t modturtle_showturtle() {
t_hidden = false;
draw_turtle();
sTurtle.setVisible(true);
return mp_const_none;
}
mp_obj_t modturtle_hideturtle() {
t_hidden = true;
erase_turtle();
sTurtle.setVisible(false);
return mp_const_none;
}
mp_obj_t modturtle_isvisible() {
return t_hidden ? mp_const_false : mp_const_true;
}
mp_obj_t modturtle___init__() {
if (!t_underneath) {
t_underneath = new KDColor[t_size * t_size];
}
if (!t_icon) {
t_icon = new KDColor[t_size * t_size];
Ion::decompress(
ImageStore::TurtleIcon->compressedPixelData(),
reinterpret_cast<uint8_t *>(t_icon),
ImageStore::TurtleIcon->compressedPixelDataSize(),
sizeof(KDColor) * t_size * t_size * t_icons
);
}
t_color = KDColorBlack;
t_heading = t_heading_offset;
t_x = t_y = 0;
t_penup = false;
t_speed = 6;
t_mileage = 0;
t_hidden = false;
modturtle_initpen(5);
return mp_const_none;
}
void modturtle_initpen(int size) {
if (t_dot) {
delete[] t_dot;
}
t_dot = new uint8_t[size*size];
t_dotsize = size;
mp_float_t middle = size / 2;
for (int j = 0; j < size; j++) {
for (int i = 0; i < size; i++) {
mp_float_t distance = sqrt((j - middle)*(j - middle) + (i - middle)*(i - middle)) / (middle+1);
int value = distance * distance * 255;
if (value < 0) {
value = 0;
}
else if (value > 255) {
value = 255;
}
t_dot[j*size + i] = value;
}
}
}
void modturtle_moveto(mp_float_t x, mp_float_t y) {
mp_float_t oldx = t_x, oldy = t_y;
mp_float_t length = sqrt((x - oldx) * (x - oldx) + (y - oldy) * (y - oldy));
if (length > 1) {
for (int i = 0; i < length; i++) {
mp_float_t progress = i / length;
if (t_speed > 0) {
Ion::Display::waitForVBlank();
}
erase_turtle();
dot_turtle(x * progress + oldx * (1 - progress), y * progress + oldy * (1 - progress));
draw_turtle();
}
}
Ion::Display::waitForVBlank();
erase_turtle();
dot_turtle(x, y);
draw_turtle();
}
void modturtle_deinit() {
delete[] t_underneath;
t_underneath = nullptr;
delete[] t_icon;
t_icon = nullptr;
delete[] t_dot;
t_dot = nullptr;
return sTurtle.isVisible() ? mp_const_true : mp_const_false;
}

View File

@@ -21,9 +21,3 @@ mp_obj_t modturtle_color(mp_obj_t r, mp_obj_t g, mp_obj_t b);
mp_obj_t modturtle_showturtle();
mp_obj_t modturtle_hideturtle();
mp_obj_t modturtle___init__();
void modturtle_initpen(int size);
void modturtle_moveto(float x, float y);
void modturtle_deinit();

View File

@@ -22,11 +22,8 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_0(modturtle_showturtle_obj, modturtle_showturtle)
STATIC MP_DEFINE_CONST_FUN_OBJ_0(modturtle_hideturtle_obj, modturtle_hideturtle);
STATIC MP_DEFINE_CONST_FUN_OBJ_0(modturtle_isvisible_obj, modturtle_isvisible);
STATIC MP_DEFINE_CONST_FUN_OBJ_0(modturtle___init___obj, modturtle___init__);
STATIC const mp_rom_map_elem_t modturtle_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_turtle) },
{ MP_ROM_QSTR(MP_QSTR___init__), (mp_obj_t)&modturtle___init___obj },
{ MP_ROM_QSTR(MP_QSTR_forward), (mp_obj_t)&modturtle_forward_obj },
{ MP_ROM_QSTR(MP_QSTR_fd), (mp_obj_t)&modturtle_forward_obj },
{ MP_ROM_QSTR(MP_QSTR_backward), (mp_obj_t)&modturtle_backward_obj },

View File

@@ -0,0 +1,229 @@
#include "turtle.h"
extern "C" {
#include <py/misc.h>
}
#include "../../helpers.h"
#include "../../port.h"
#include "turtle_icon.h"
template <typename T> static inline T * allocate(size_t count) {
// We forward dynamic allocations to the Python heap
return static_cast<T*>(m_malloc(sizeof(T) * count));
}
void Turtle::forward(mp_float_t length) {
goTo(
m_x + length * sin(m_heading),
m_y + length * cos(m_heading)
);
}
void Turtle::left(mp_float_t angle) {
setHeading(
((m_heading - k_headingOffset) + (angle * k_headingScale)) / k_headingScale
);
}
void Turtle::goTo(mp_float_t x, mp_float_t y) {
mp_float_t oldx = m_x;
mp_float_t oldy = m_y;
mp_float_t length = sqrt((x - oldx) * (x - oldx) + (y - oldy) * (y - oldy));
if (length > 1) {
// Tweening function
for (int i = 0; i < length; i++) {
mp_float_t progress = i / length;
if (m_speed > 0) {
Ion::Display::waitForVBlank();
}
erase();
dot(x * progress + oldx * (1 - progress), y * progress + oldy * (1 - progress));
draw();
}
}
Ion::Display::waitForVBlank();
erase();
dot(x, y);
draw();
}
mp_float_t Turtle::heading() const {
return (m_heading - k_headingOffset) / k_headingScale;
}
void Turtle::setHeading(mp_float_t angle) {
micropython_port_vm_hook_loop();
m_heading = angle * k_headingScale + k_headingScale;
Ion::Display::waitForVBlank();
erase();
draw();
}
void Turtle::setSpeed(mp_int_t speed) {
// Speed is clamped between 0 and 10
if (speed < 0) {
m_speed = 0;
} else if (speed > 10) {
m_speed = 10;
} else {
m_speed = speed;
}
}
void Turtle::setPenSize(KDCoordinate penSize) {
if (m_penSize == penSize) {
return;
}
if (m_dotMask) {
m_free(m_dotMask);
m_dotMask = nullptr;
}
if (m_dotWorkingPixelBuffer) {
m_free(m_dotWorkingPixelBuffer);
m_dotWorkingPixelBuffer = nullptr;
}
m_penSize = penSize;
}
void Turtle::setVisible(bool visible) {
m_visible = visible;
if (m_visible) {
draw();
} else {
erase();
}
}
// Private functions
KDPoint Turtle::position(mp_float_t x, mp_float_t y) const {
return KDPoint(round(x + k_xOffset), round(y + k_yOffset));
}
bool Turtle::hasUnderneathPixelBuffer() {
if (m_underneathPixelBuffer != nullptr) {
return true;
}
m_underneathPixelBuffer = allocate<KDColor>(k_iconSize.width() * k_iconSize.height());
return (m_underneathPixelBuffer != nullptr);
}
bool Turtle::hasDotMask() {
if (m_dotMask != nullptr) {
return true;
}
m_dotMask = allocate<uint8_t>(m_penSize * m_penSize);
if (m_dotMask == nullptr) {
return false;
}
mp_float_t middle = m_penSize / 2;
for (int j = 0; j < m_penSize; j++) {
for (int i = 0; i < m_penSize; i++) {
mp_float_t distance = sqrt((j - middle)*(j - middle) + (i - middle)*(i - middle)) / (middle+1);
int value = distance * distance * 255;
if (value < 0) {
value = 0;
} else if (value > 255) {
value = 255;
}
m_dotMask[j*m_penSize+i] = value;
}
}
return true;
}
bool Turtle::hasDotBuffers() {
if (m_dotWorkingPixelBuffer == nullptr) {
m_dotWorkingPixelBuffer = allocate<KDColor>(m_penSize * m_penSize);
}
return m_dotWorkingPixelBuffer && hasDotMask();
}
const KDColor * Turtle::icon() {
if (m_iconsPixels == nullptr) {
m_iconsPixels = allocate<KDColor>(k_iconSize.width() * k_iconSize.height() * k_numberOfIcons);
if (m_iconsPixels == nullptr) {
return nullptr;
}
Ion::decompress(
ImageStore::TurtleIcon->compressedPixelData(),
reinterpret_cast<uint8_t *>(m_iconsPixels),
ImageStore::TurtleIcon->compressedPixelDataSize(),
sizeof(KDColor) * k_iconSize.width() * k_iconSize.height() * k_numberOfIcons
);
}
int frame = ((m_heading / (2*M_PI)) * k_numberOfIcons + 0.5);
if (frame < 0) {
frame = k_numberOfIcons - ((-frame) % k_numberOfIcons) - 1;
} else {
frame = frame % k_numberOfIcons;
}
int offset = frame * k_iconSize.width() * k_iconSize.height();
return &m_iconsPixels[offset];
}
void Turtle::draw() {
MicroPython::ExecutionEnvironment::currentExecutionEnvironment()->displaySandbox();
const KDColor * i = icon();
if (m_visible && i && hasUnderneathPixelBuffer()) {
KDContext * ctx = KDIonContext::sharedContext();
KDRect rect = iconRect();
ctx->getPixels(rect, m_underneathPixelBuffer);
ctx->fillRectWithPixels(rect, i, nullptr);
m_drawn = true;
}
if (m_mileage > 1000) {
if (m_speed > 0) {
micropython_port_interruptible_msleep(8 * (8 - m_speed));
m_mileage -= 1000;
} else {
m_mileage = 0;
}
}
}
void Turtle::erase() {
if (!m_drawn || m_underneathPixelBuffer == nullptr) {
return;
}
KDContext * ctx = KDIonContext::sharedContext();
ctx->fillRectWithPixels(iconRect(), m_underneathPixelBuffer, nullptr);
m_drawn = false;
}
void Turtle::dot(mp_float_t x, mp_float_t y) {
MicroPython::ExecutionEnvironment::currentExecutionEnvironment()->displaySandbox();
if (m_penDown && hasDotBuffers()) {
KDContext * ctx = KDIonContext::sharedContext();
KDRect rect(
position(x, y).translatedBy(KDPoint(-m_penSize/2, -m_penSize/2)),
KDSize(m_penSize, m_penSize)
);
ctx->blendRectWithMask(rect, m_color, m_dotMask, m_dotWorkingPixelBuffer);
}
if (m_speed > 0) {
m_mileage += sqrt((x - m_x) * (x - m_x) + (y - m_y) * (y - m_y)) * 1000;
}
micropython_port_vm_hook_loop();
m_x = x;
m_y = y;
}

View File

@@ -0,0 +1,104 @@
#ifndef PYTHON_PORT_MOD_TURTLE_TURTLE_H
#define PYTHON_PORT_MOD_TURTLE_TURTLE_H
extern "C" {
#include <py/mpconfig.h>
}
#include <ion.h>
#include <kandinsky.h>
#include <math.h>
class Turtle {
public:
constexpr Turtle() :
m_x(0),
m_y(0),
m_heading(k_headingOffset),
m_color(KDColorBlack),
m_penDown(true),
m_visible(true),
m_speed(6),
m_penSize(5),
m_mileage(0),
m_drawn(false),
m_underneathPixelBuffer(nullptr),
m_dotMask(nullptr),
m_dotWorkingPixelBuffer(nullptr),
m_iconsPixels(nullptr)
{}
void forward(mp_float_t length);
void backward(mp_float_t length) { forward(-length); }
void right(mp_float_t angle) { left(-angle); }
void left(mp_float_t angle);
void goTo(mp_float_t x, mp_float_t y);
mp_float_t heading() const;
void setHeading(mp_float_t angle);
void setSpeed(mp_int_t speed);
mp_float_t x() const { return m_x; }
mp_float_t y() const { return m_y; }
KDCoordinate penSize() const { return m_penSize; }
void setPenSize(KDCoordinate penSize);
bool isPenDown() const { return m_penDown; }
void setPenDown(bool penDown) { m_penDown = penDown; }
bool isVisible() const { return m_visible; }
void setVisible(bool visible);
void setColor(KDColor c) {
m_color = c;
}
private:
static constexpr mp_float_t k_headingOffset = M_PI_2;
static constexpr mp_float_t k_headingScale = M_PI / 180;
static constexpr KDCoordinate k_xOffset = Ion::Display::Width / 2;
static constexpr KDCoordinate k_yOffset = (Ion::Display::Height - 18) / 2;
static constexpr KDSize k_iconSize = KDSize(9, 9);
static constexpr int k_numberOfIcons = 8;
KDPoint position(mp_float_t x, mp_float_t y) const;
KDPoint position() const { return position(m_x, m_y); }
bool hasUnderneathPixelBuffer();
bool hasDotMask();
bool hasDotBuffers();
KDRect iconRect() const {
KDPoint iconOffset = KDPoint(-k_iconSize.width()/2 + 1, -k_iconSize.height()/2 + 1);
return KDRect(position().translatedBy(iconOffset), k_iconSize);
}
const KDColor * icon();
void draw();
void erase();
void dot(mp_float_t x, mp_float_t y);
mp_float_t m_x;
mp_float_t m_y;
mp_float_t m_heading;
KDColor m_color;
bool m_penDown;
bool m_visible;
uint8_t m_speed; // Speed is between 1 and 10
KDCoordinate m_penSize;
KDCoordinate m_mileage;
bool m_drawn;
KDColor * m_underneathPixelBuffer;
uint8_t * m_dotMask;
KDColor * m_dotWorkingPixelBuffer;
KDColor * m_iconsPixels;
// KDColor m_pixelBuffer[100];
};
#endif

View File

@@ -17,7 +17,6 @@ extern "C" {
#include "py/repl.h"
#include "py/runtime.h"
#include "py/stackctrl.h"
#include "mod/turtle/modturtle.h"
#include "mphalport.h"
}
@@ -109,7 +108,6 @@ void MicroPython::init(void * heapStart, void * heapEnd) {
}
void MicroPython::deinit() {
modturtle_deinit();
mp_deinit();
}

View File

@@ -619,7 +619,7 @@ typedef double mp_float_t;
// Whether to call __init__ when importing builtin modules for the first time
#ifndef MICROPY_MODULE_BUILTIN_INIT
#define MICROPY_MODULE_BUILTIN_INIT (1)
#define MICROPY_MODULE_BUILTIN_INIT (0)
#endif
// Whether module weak links are supported