[apps/graph] Fixed cache step quirks

Change-Id: I5b630301ab2a4b17a5a4d77c7d9a05120449e55e
This commit is contained in:
Gabriel Ozouf
2020-06-12 14:33:49 +02:00
committed by Émilie Feral
parent 1bee23cf4f
commit beb228fa78
4 changed files with 24 additions and 28 deletions

View File

@@ -40,18 +40,8 @@ void GraphView::drawRect(KDContext * ctx, KDRect rect) const {
}
float tmin = f->tMin();
float tmax = f->tMax();
/* The step is a fraction of tmax-tmin. We will evaluate the function at
* every step and if the consecutive dots are close enough, we won't
* evaluate any more dot within the step. We pick a very strange fraction
* denominator to avoid evaluating a periodic function periodically. For
* example, if tstep was (tmax - tmin)/10, the polar function r(θ) = sin(5θ)
* defined on 0..2π would be evaluated on r(0) = 0, r(π/5) = 0, r(2*π/5) = 0
* which would lead to no curve at all. With 10.0938275501223, the
* problematic functions are the functions whose period is proportionned to
* 10.0938275501223 which are hopefully rare enough.
* TODO: The drawCurve algorithm should use the derivative function to know
* how fast the function moves... */
float tstep = (tmax-tmin)/10.0938275501223f;
float tstep = (tmax-tmin)/k_graphStepDenominator;
float tCacheMin, tCacheStep;
if (type == ContinuousFunction::PlotType::Cartesian) {
@@ -60,7 +50,7 @@ void GraphView::drawRect(KDContext * ctx, KDRect rect) const {
tCacheStep = pixelWidth();
} else {
tCacheMin = tmin;
tCacheStep = tstep;
tCacheStep = tstep / ContinuousFunctionCache::k_parametricStepFactor;
}
ContinuousFunctionCache::PrepareForCaching(f.operator->(), cch, tCacheMin, tCacheStep);

View File

@@ -7,6 +7,19 @@ namespace Graph {
class GraphView : public Shared::FunctionGraphView {
public:
/* The step is a fraction of tmax-tmin. We will evaluate the function at
* every step and if the consecutive dots are close enough, we won't
* evaluate any more dot within the step. We pick a very strange fraction
* denominator to avoid evaluating a periodic function periodically. For
* example, if tstep was (tmax - tmin)/10, the polar function r(θ) = sin(5θ)
* defined on 0..2π would be evaluated on r(0) = 0, r(π/5) = 0, r(2*π/5) = 0
* which would lead to no curve at all. With 10.0938275501223, the
* problematic functions are the functions whose period is proportionned to
* 10.0938275501223 which are hopefully rare enough.
* TODO: The drawCurve algorithm should use the derivative function to know
* how fast the function moves... */
static constexpr float k_graphStepDenominator = 10.0938275501223f;
GraphView(Shared::InteractiveCurveViewRange * graphRange,
Shared::CurveViewCursor * cursor, Shared::BannerView * bannerView, Shared::CursorView * cursorView);
void reload() override;

View File

@@ -7,6 +7,7 @@ namespace Shared {
constexpr int ContinuousFunctionCache::k_sizeOfCache;
constexpr float ContinuousFunctionCache::k_cacheHitTolerance;
constexpr int ContinuousFunctionCache::k_numberOfAvailableCaches;
constexpr int ContinuousFunctionCache::k_parametricStepFactor;
// public
void ContinuousFunctionCache::PrepareForCaching(void * fun, ContinuousFunctionCache * cache, float tMin, float tStep) {
@@ -44,13 +45,6 @@ Poincare::Coordinate2D<float> ContinuousFunctionCache::valueForParameter(const C
}
// private
float ContinuousFunctionCache::StepFactor(ContinuousFunction * function) {
/* When drawing a parametric or polar curve, the range is first divided by
* ~10,9, creating 11 intervals which are filled by dichotomy.
* We memoize 16 values for each of the 10 big intervals. */
return (function->plotType() == ContinuousFunction::PlotType::Cartesian) ? 1.f : 16.f;
}
void ContinuousFunctionCache::invalidateBetween(int iInf, int iSup) {
for (int i = iInf; i < iSup; i++) {
m_cache[i] = NAN;
@@ -59,7 +53,7 @@ void ContinuousFunctionCache::invalidateBetween(int iInf, int iSup) {
void ContinuousFunctionCache::setRange(ContinuousFunction * function, float tMin, float tStep) {
m_tMin = tMin;
m_tStep = tStep / StepFactor(function);
m_tStep = tStep;
}
int ContinuousFunctionCache::indexForParameter(const ContinuousFunction * function, float t) const {

View File

@@ -1,6 +1,7 @@
#ifndef SHARED_CONTINUOUS_FUNCTION_CACHE_H
#define SHARED_CONTINUOUS_FUNCTION_CACHE_H
#include "../graph/graph/graph_view.h"
#include <ion/display.h>
#include <poincare/context.h>
#include <poincare/coordinate_2D.h>
@@ -10,10 +11,13 @@ namespace Shared {
class ContinuousFunction;
class ContinuousFunctionCache {
public:
private:
/* The size of the cache is chosen to optimize the display of cartesian
* function */
* functions */
static constexpr int k_sizeOfCache = Ion::Display::Width;
public:
static constexpr int k_numberOfAvailableCaches = 2;
static constexpr int k_parametricStepFactor = k_sizeOfCache / int(Graph::GraphView::k_graphStepDenominator);
static void PrepareForCaching(void * fun, ContinuousFunctionCache * cache, float tMin, float tStep);
@@ -23,13 +27,8 @@ public:
void clear();
Poincare::Coordinate2D<float> valueForParameter(const ContinuousFunction * function, Poincare::Context * context, float t);
private:
/* The size of the cache is chosen to optimize the display of cartesian
* function */
static constexpr int k_sizeOfCache = Ion::Display::Width;
static constexpr float k_cacheHitTolerance = 1e-3;
static float StepFactor(ContinuousFunction * function);
void invalidateBetween(int iInf, int iSup);
void setRange(ContinuousFunction * function, float tMin, float tStep);
int indexForParameter(const ContinuousFunction * function, float t) const;