[apps/calculation] Calculation store has one big buffer for calculations

This commit is contained in:
Léa Saviot
2019-07-08 11:42:09 +02:00
committed by Émilie Feral
parent e15df6d60d
commit c7fd11e4b0
7 changed files with 301 additions and 241 deletions

View File

@@ -35,7 +35,6 @@ App::Descriptor * App::Snapshot::descriptor() {
}
void App::Snapshot::tidy() {
m_calculationStore.tidy();
}
App::App(Snapshot * snapshot) :

View File

@@ -1,7 +1,5 @@
#include "calculation.h"
#include "calculation_store.h"
#include "../shared/poincare_helpers.h"
#include <poincare/symbol.h>
#include <poincare/undefined.h>
#include <poincare/unreal.h>
#include <string.h>
@@ -14,50 +12,70 @@ namespace Calculation {
static inline KDCoordinate maxCoordinate(KDCoordinate x, KDCoordinate y) { return x > y ? x : y; }
Calculation::Calculation() :
m_inputText(),
m_exactOutputText(),
m_approximateOutputText(),
m_displayOutput(DisplayOutput::Unknown),
m_height(-1),
m_expandedHeight(-1),
m_equalSign(EqualSign::Unknown)
{
}
bool Calculation::operator==(const Calculation& c) {
return strcmp(m_inputText, c.m_inputText) == 0
&& strcmp(m_approximateOutputText, c.m_approximateOutputText) == 0
return strcmp(inputText(), c.inputText()) == 0
&& strcmp(approximateOutputText(), c.approximateOutputText()) == 0
/* Some calculations can make appear trigonometric functions in their
* exact output. Their argument will be different with the angle unit
* preferences but both input and approximate output will be the same.
* For example, i^(sqrt(3)) = cos(sqrt(3)*pi/2)+i*sin(sqrt(3)*pi/2) if
* angle unit is radian and i^(sqrt(3)) = cos(sqrt(3)*90+i*sin(sqrt(3)*90)
* in degree. */
&& strcmp(m_exactOutputText, c.m_exactOutputText) == 0;
&& strcmp(exactOutputText(), c.exactOutputText()) == 0;
}
void Calculation::reset() {
m_inputText[0] = 0;
m_exactOutputText[0] = 0;
m_approximateOutputText[0] = 0;
tidy();
}
void Calculation::setContent(const char * c, Context * context, Expression ansExpression) {
reset();
{
Symbol ansSymbol = Symbol::Ans();
Expression input = Expression::Parse(c).replaceSymbolWithExpression(ansSymbol, ansExpression);
/* We do not store directly the text enter by the user because we do not want
* to keep Ans symbol in the calculation store. */
PoincareHelpers::Serialize(input, m_inputText, sizeof(m_inputText));
Calculation * Calculation::next() const {
const char * result = reinterpret_cast<const char *>(this) + sizeof(Calculation);
for (int i = 0; i < 3; i++) {
result = result + strlen(result) + 1; // Pass inputText, exactOutputText, ApproximateOutputText
}
Expression exactOutput;
Expression approximateOutput;
PoincareHelpers::ParseAndSimplifyAndApproximate(m_inputText, &exactOutput, &approximateOutput, context, false);
PoincareHelpers::Serialize(exactOutput, m_exactOutputText, sizeof(m_exactOutputText));
PoincareHelpers::Serialize(approximateOutput, m_approximateOutputText, sizeof(m_approximateOutputText));
return reinterpret_cast<Calculation *>(const_cast<char *>(result));
}
const char * Calculation::approximateOutputText() const {
const char * exactOutput = exactOutputText();
return exactOutput + strlen(exactOutput) + 1;
}
Expression Calculation::input() {
return Expression::Parse(m_inputText);
}
Expression Calculation::exactOutput() {
/* Because the angle unit might have changed, we do not simplify again. We
* thereby avoid turning cos(Pi/4) into sqrt(2)/2 and displaying
* 'sqrt(2)/2 = 0.999906' (which is totally wrong) instead of
* 'cos(pi/4) = 0.999906' (which is true in degree). */
Expression exactOutput = Expression::Parse(exactOutputText());
if (exactOutput.isUninitialized()) {
return Undefined::Builder();
}
return exactOutput;
}
Expression Calculation::approximateOutput(Context * context) {
/* To ensure that the expression 'm_output' is a matrix or a complex, we
* call 'evaluate'. */
Expression exp = Expression::Parse(approximateOutputText());
if (exp.isUninitialized()) {
/* TODO LEA replace with assert
* exp might be uninitialized because the serialization did not fit in
* the buffer. Put a special error instead of "undef". */
return Undefined::Builder();
}
return PoincareHelpers::Approximate<double>(exp, context);
}
Layout Calculation::createInputLayout() {
return input().createLayout(Preferences::PrintFloatMode::Decimal, PrintFloat::k_numberOfStoredSignificantDigits);
}
Layout Calculation::createExactOutputLayout() {
return PoincareHelpers::CreateLayout(exactOutput());
}
Layout Calculation::createApproximateOutputLayout(Context * context) {
return PoincareHelpers::CreateLayout(approximateOutput(context));
}
KDCoordinate Calculation::height(Context * context, bool expanded) {
@@ -92,80 +110,6 @@ KDCoordinate Calculation::height(Context * context, bool expanded) {
return *memoizedHeight;
}
const char * Calculation::inputText() {
return m_inputText;
}
const char * Calculation::exactOutputText() {
return m_exactOutputText;
}
const char * Calculation::approximateOutputText() {
return m_approximateOutputText;
}
Expression Calculation::input() {
return Expression::Parse(m_inputText);
}
Layout Calculation::createInputLayout() {
return input().createLayout(Preferences::PrintFloatMode::Decimal, PrintFloat::k_numberOfStoredSignificantDigits);
}
bool Calculation::isEmpty() {
/* To test if a calculation is empty, we need to test either m_inputText or
* m_exactOutputText or m_approximateOutputText, the only three fields that
* are not lazy-loaded. We choose m_exactOutputText to consider that a
* calculation being added is still empty until the end of the method
* 'setContent'. Indeed, during 'setContent' method, 'ans' evaluation calls
* the evaluation of the last calculation only if the calculation being
* filled is not taken into account.*/
if (strlen(m_approximateOutputText) == 0) {
return true;
}
return false;
}
void Calculation::tidy() {
/* Uninitialized all Expression stored to free the Pool */
m_displayOutput = DisplayOutput::Unknown;
m_height = -1;
m_expandedHeight = -1;
m_equalSign = EqualSign::Unknown;
}
Expression Calculation::exactOutput() {
/* Because the angle unit might have changed, we do not simplify again. We
* thereby avoid turning cos(Pi/4) into sqrt(2)/2 and displaying
* 'sqrt(2)/2 = 0.999906' (which is totally wrong) instead of
* 'cos(pi/4) = 0.999906' (which is true in degree). */
Expression exactOutput = Expression::Parse(m_exactOutputText);
if (exactOutput.isUninitialized()) {
return Undefined::Builder();
}
return exactOutput;
}
Layout Calculation::createExactOutputLayout() {
return PoincareHelpers::CreateLayout(exactOutput());
}
Expression Calculation::approximateOutput(Context * context) {
/* To ensure that the expression 'm_output' is a matrix or a complex, we
* call 'evaluate'. */
Expression exp = Expression::Parse(m_approximateOutputText);
if (exp.isUninitialized()) {
/* TODO: exp might be uninitialized because the serialization did not fit in
* the buffer. Put a special error instead of "undef". */
return Undefined::Builder();
}
return PoincareHelpers::Approximate<double>(exp, context);
}
Layout Calculation::createApproximateOutputLayout(Context * context) {
return PoincareHelpers::CreateLayout(approximateOutput(context));
}
Calculation::DisplayOutput Calculation::displayOutput(Context * context) {
if (m_displayOutput != DisplayOutput::Unknown) {
return m_displayOutput;
@@ -185,15 +129,20 @@ Calculation::DisplayOutput Calculation::displayOutput(Context * context) {
context, true))
{
m_displayOutput = DisplayOutput::ApproximateOnly;
} else if (strcmp(m_exactOutputText, m_approximateOutputText) == 0) {
} else if (strcmp(exactOutputText(), approximateOutputText()) == 0) {
/* If the exact and approximate results' texts are equal and their layouts
* too, do not display the exact result. If the two layouts are not equal
* because of the number of significant digits, we display both. */
m_displayOutput = exactAndApproximateDisplayedOutputsAreEqual(context) == Calculation::EqualSign::Equal ? DisplayOutput::ApproximateOnly : DisplayOutput::ExactAndApproximate;
} else if (strcmp(m_exactOutputText, Undefined::Name()) == 0 || strcmp(m_approximateOutputText, Unreal::Name()) == 0 || exactOutput().type() == ExpressionNode::Type::Undefined) {
} else if (strcmp(exactOutputText(), Undefined::Name()) == 0
|| strcmp(approximateOutputText(), Unreal::Name()) == 0
|| exactOutput().type() == ExpressionNode::Type::Undefined)
{
// If the approximate result is 'unreal' or the exact result is 'undef'
m_displayOutput = DisplayOutput::ApproximateOnly;
} else if (input().recursivelyMatches(Expression::IsApproximate, context) || exactOutput().recursivelyMatches(Expression::IsApproximate, context)) {
} else if (input().recursivelyMatches(Expression::IsApproximate, context)
|| exactOutput().recursivelyMatches(Expression::IsApproximate, context))
{
m_displayOutput = DisplayOutput::ExactAndApproximateToggle;
} else {
m_displayOutput = DisplayOutput::ExactAndApproximate;
@@ -204,8 +153,9 @@ Calculation::DisplayOutput Calculation::displayOutput(Context * context) {
bool Calculation::shouldOnlyDisplayExactOutput() {
/* If the input is a "store in a function", do not display the approximate
* result. This prevents x->f(x) from displaying x = undef. */
return input().type() == ExpressionNode::Type::Store
&& input().childAtIndex(1).type() == ExpressionNode::Type::Function;
Expression i = input();
return i.type() == ExpressionNode::Type::Store
&& i.childAtIndex(1).type() == ExpressionNode::Type::Function;
}
Calculation::EqualSign Calculation::exactAndApproximateDisplayedOutputsAreEqual(Poincare::Context * context) {
@@ -215,7 +165,7 @@ Calculation::EqualSign Calculation::exactAndApproximateDisplayedOutputsAreEqual(
constexpr int bufferSize = Constant::MaxSerializedExpressionSize;
char buffer[bufferSize];
Preferences * preferences = Preferences::sharedPreferences();
Expression exactOutputExpression = PoincareHelpers::ParseAndSimplify(m_exactOutputText, context, false);
Expression exactOutputExpression = PoincareHelpers::ParseAndSimplify(exactOutputText(), context, false);
if (exactOutputExpression.isUninitialized()) {
exactOutputExpression = Undefined::Builder();
}

View File

@@ -10,6 +10,13 @@ namespace Calculation {
class CalculationStore;
/* A calculation is:
* | uint8_t |KDCoordinate| KDCoordinate | uint8_t | ... | ... | ... |
* |m_displayOutput| m_height |m_expandedHeight|m_equalSign|m_inputText|m_exactOuputText|m_approximateOuputText|
*
* */
#pragma pack(push,1)
class Calculation {
public:
enum class EqualSign : uint8_t {
@@ -26,23 +33,39 @@ public:
ExactAndApproximateToggle
};
Calculation();
/* It is not really the minimal size, but it clears enough space for most
* calculations instead of clearing less space, then fail to serialize, clear
* more space, fail to serialize, clear more space, etc., until reaching
* sufficient free space. */
static int MinimalSize() { return sizeof(uint8_t) + 2*sizeof(KDCoordinate) + sizeof(uint8_t) + 3*Constant::MaxSerializedExpressionSize; }
Calculation() :
m_displayOutput(DisplayOutput::Unknown),
m_height(-1),
m_expandedHeight(-1),
m_equalSign(EqualSign::Unknown)
{
assert(sizeof(m_inputText) == 0);
}
bool operator==(const Calculation& c);
/* c.reset() is the equivalent of c = Calculation() without copy assingment. */
void reset();
void setContent(const char * c, Poincare::Context * context, Poincare::Expression ansExpression);
KDCoordinate height(Poincare::Context * context, bool expanded = false);
const char * inputText();
const char * exactOutputText();
const char * approximateOutputText();
Calculation * next() const;
// Texts
const char * inputText() const { return m_inputText; }
const char * exactOutputText() const { return m_inputText + strlen(m_inputText) + 1; }
const char * approximateOutputText() const;
// Expressions
Poincare::Expression input();
Poincare::Layout createInputLayout();
Poincare::Expression approximateOutput(Poincare::Context * context);
Poincare::Expression exactOutput();
Poincare::Expression approximateOutput(Poincare::Context * context);
// Layouts
Poincare::Layout createInputLayout();
Poincare::Layout createExactOutputLayout();
Poincare::Layout createApproximateOutputLayout(Poincare::Context * context);
bool isEmpty();
void tidy();
KDCoordinate height(Poincare::Context * context, bool expanded = false);
DisplayOutput displayOutput(Poincare::Context * context);
bool shouldOnlyDisplayExactOutput();
EqualSign exactAndApproximateDisplayedOutputsAreEqual(Poincare::Context * context);
@@ -51,14 +74,13 @@ private:
/* Buffers holding text expressions have to be longer than the text written
* by user (of maximum length TextField::maxBufferSize()) because when we
* print an expression we add omitted signs (multiplications, parenthesis...) */
char m_inputText[Constant::MaxSerializedExpressionSize];
char m_exactOutputText[Constant::MaxSerializedExpressionSize];
char m_approximateOutputText[Constant::MaxSerializedExpressionSize];
DisplayOutput m_displayOutput;
KDCoordinate m_height;
KDCoordinate m_expandedHeight;
EqualSign m_equalSign;
char m_inputText[0]; // MUST be the last member variable
};
#pragma pack(pop)
}

View File

@@ -1,108 +1,168 @@
#include "calculation_store.h"
#include <assert.h>
#include "../shared/poincare_helpers.h"
#include <poincare/rational.h>
#include <poincare/symbol.h>
#include <assert.h>
using namespace Poincare;
using namespace Shared;
namespace Calculation {
Calculation * CalculationStore::push(const char * text, Context * context) {
Calculation * result = &m_calculations[m_startIndex];
result->setContent(text, context, ansExpression(context));
m_startIndex++;
if (m_startIndex >= k_maxNumberOfCalculations) {
m_startIndex = 0;
ExpiringPointer<Calculation> CalculationStore::calculationAtIndex(int i) {
assert(!m_slidedBuffer);
assert(i >= 0 && i < m_numberOfCalculations);
int currentIndex = 0;
for (Calculation * c : *this) {
if (currentIndex == i) {
return ExpiringPointer<Calculation>(c);
}
currentIndex++;
}
return result;
assert(false);
return nullptr;
}
Calculation * CalculationStore::calculationAtIndex(int i) {
int j = 0;
Calculation * currentCalc = &m_calculations[m_startIndex];
Calculation * previousCalc = nullptr;
while (j <= i) {
if (!currentCalc++->isEmpty()) {
previousCalc = currentCalc - 1;
j++;
}
if (currentCalc >= m_calculations + k_maxNumberOfCalculations) {
currentCalc = m_calculations;
}
}
return previousCalc;
}
ExpiringPointer<Calculation> CalculationStore::push(const char * text, Context * context) {
/* Compute ans now, before the buffer is slided and before the calculation
* might be deleted */
Expression ans = ansExpression(context); // TODO LEA compute ans only if Ans is in the input ?
int CalculationStore::numberOfCalculations() {
Calculation * currentCalc= m_calculations;
int numberOfCalculations = 0;
while (currentCalc < m_calculations + k_maxNumberOfCalculations) {
if (!currentCalc++->isEmpty()) {
numberOfCalculations++;
}
// Prepare the buffer for the new calculation
int minSize = Calculation::MinimalSize();
assert(k_bufferSize > minSize);
while (remainingBufferSize() < minSize) {
deleteLastCalculation();
}
return numberOfCalculations;
char * newCalculationsLocation = slideCalculationsToEndOfBuffer();
char * nextSerializationLocation = m_buffer;
// Add the beginning of the calculation
{
/* Copy the begining of the calculation. The calculation minimal size is
* available, so this memcpy will not overide anything. */
Calculation newCalc = Calculation();
size_t calcSize = sizeof(newCalc);
memcpy(nextSerializationLocation, &newCalc, calcSize);
nextSerializationLocation += calcSize;
}
/* Add the input expression.
* We do not store directly the text entered by the user because we do not
* want to keep Ans symbol in the calculation store. */
Expression input = Expression::Parse(text).replaceSymbolWithExpression(Symbol::Ans(), ans);
const char * inputSerialization = nextSerializationLocation;
serializeExpression(input, nextSerializationLocation, &newCalculationsLocation);
nextSerializationLocation += strlen(nextSerializationLocation) + 1;
Expression exactOutput;
Expression approximateOutput;
PoincareHelpers::ParseAndSimplifyAndApproximate(inputSerialization, &exactOutput, &approximateOutput, context, false);
serializeExpression(exactOutput, nextSerializationLocation, &newCalculationsLocation);
nextSerializationLocation += strlen(nextSerializationLocation) + 1;
serializeExpression(approximateOutput, nextSerializationLocation, &newCalculationsLocation);
nextSerializationLocation += strlen(nextSerializationLocation) + 1;
size_t slideSize = m_buffer + k_bufferSize - newCalculationsLocation;
memcpy(nextSerializationLocation, newCalculationsLocation, slideSize);
m_slidedBuffer = false;
m_numberOfCalculations++;
m_bufferEnd+= nextSerializationLocation - m_buffer;
return ExpiringPointer<Calculation>(reinterpret_cast<Calculation *>(m_buffer));
}
void CalculationStore::deleteCalculationAtIndex(int i) {
int numberOfCalc = numberOfCalculations();
assert(i >= 0 && i < numberOfCalc);
int indexFirstCalc = m_startIndex;
while (m_calculations[indexFirstCalc].isEmpty()) {
indexFirstCalc++;
if (indexFirstCalc == k_maxNumberOfCalculations) {
indexFirstCalc = 0;
}
assert(indexFirstCalc != m_startIndex);
}
int absoluteIndexCalculationI = indexFirstCalc+i;
absoluteIndexCalculationI = absoluteIndexCalculationI >= k_maxNumberOfCalculations ? absoluteIndexCalculationI - k_maxNumberOfCalculations : absoluteIndexCalculationI;
int index = absoluteIndexCalculationI;
for (int k = i; k < numberOfCalc-1; k++) {
int nextIndex = index+1 >= k_maxNumberOfCalculations ? 0 : index+1;
m_calculations[index] = m_calculations[nextIndex];
index++;
if (index == k_maxNumberOfCalculations) {
index = 0;
}
}
m_calculations[index].reset();
m_startIndex--;
if (m_startIndex == -1) {
m_startIndex = k_maxNumberOfCalculations-1;
}
assert(i >= 0 && i < m_numberOfCalculations);
assert(!m_slidedBuffer);
ExpiringPointer<Calculation> calcI = calculationAtIndex(i);
char * nextCalc = reinterpret_cast<char *>(calcI->next());
assert(m_bufferEnd >= nextCalc);
size_t slidingSize = m_bufferEnd - nextCalc;
memcpy((char *)(calcI.pointer()), nextCalc, slidingSize);
m_bufferEnd -= (nextCalc - (char *)(calcI.pointer()));
m_numberOfCalculations--;
}
void CalculationStore::deleteAll() {
m_startIndex = 0;
for (int i = 0; i < k_maxNumberOfCalculations; i++) {
m_calculations[i].reset();
}
}
void CalculationStore::tidy() {
for (int i = 0; i < k_maxNumberOfCalculations; i++) {
m_calculations[i].tidy();
}
assert(!m_slidedBuffer);
m_bufferEnd = m_buffer;
m_numberOfCalculations = 0;
}
Expression CalculationStore::ansExpression(Context * context) {
if (numberOfCalculations() == 0) {
return Rational::Builder(0);
}
Calculation * lastCalculation = calculationAtIndex(numberOfCalculations()-1);
ExpiringPointer<Calculation> mostRecentCalculation = calculationAtIndex(0);
/* Special case: the exact output is a Store/Equal expression.
* Store/Equal expression can only be at the root of an expression.
* To avoid turning 'ans->A' in '2->A->A' or '2=A->A' (which cannot be
* parsed), ans is replaced by the approximation output when any Store or
* Equal expression appears. */
bool exactOuptutInvolvesStoreEqual = lastCalculation->exactOutput().recursivelyMatches([](const Expression e, Context * context) {
bool exactOuptutInvolvesStoreEqual = mostRecentCalculation->exactOutput().recursivelyMatches([](const Expression e, Context * context) {
return e.type() == ExpressionNode::Type::Store || e.type() == ExpressionNode::Type::Equal;
}, context, false);
if (lastCalculation->input().recursivelyMatches(Expression::IsApproximate, context) || exactOuptutInvolvesStoreEqual) {
return lastCalculation->approximateOutput(context);
if (mostRecentCalculation->input().recursivelyMatches(Expression::IsApproximate, context) || exactOuptutInvolvesStoreEqual) {
return mostRecentCalculation->approximateOutput(context);
}
return mostRecentCalculation->exactOutput();
}
void CalculationStore::serializeExpression(Expression e, char * location, char * * newCalculationsLocation) {
assert(m_slidedBuffer);
pushExpression(
[](char * location, size_t locationSize, void * e) {
return PoincareHelpers::Serialize(*(Expression *)e, location, locationSize) < locationSize-1; //TODO LEA check the return value
},
&e, location, newCalculationsLocation);
}
char * CalculationStore::slideCalculationsToEndOfBuffer() {
int calculationsSize = m_bufferEnd - m_buffer;
char * calculationsNewPosition = m_buffer + k_bufferSize - calculationsSize;
memcpy(calculationsNewPosition, m_buffer, calculationsSize);
m_slidedBuffer = true;
return calculationsNewPosition;
}
size_t CalculationStore::deleteLastCalculation(const char * calculationsStart) {
assert(m_numberOfCalculations > 0);
size_t result;
if (!m_slidedBuffer) {
assert(calculationsStart == nullptr);
const char * previousBufferEnd = m_bufferEnd;
m_bufferEnd = lastCalculationPosition(m_buffer);
assert(previousBufferEnd > m_bufferEnd);
result = previousBufferEnd - m_bufferEnd;
} else {
assert(calculationsStart != nullptr);
const char * lastCalc = lastCalculationPosition(calculationsStart);
assert(*lastCalc == 0);
result = m_buffer + k_bufferSize - lastCalc;
memcpy(const_cast<char *>(calculationsStart + result), calculationsStart, m_buffer + k_bufferSize - calculationsStart - result);
}
m_numberOfCalculations--;
return result;
}
const char * CalculationStore::lastCalculationPosition(const char * calculationsStart) const {
// TODO LEA: Make this faster?
assert(calculationsStart >= m_buffer && calculationsStart < m_buffer + k_bufferSize);
Calculation * c = reinterpret_cast<Calculation *>(const_cast<char *>(calculationsStart));
int calculationIndex = 0;
while (calculationIndex < m_numberOfCalculations - 1) {
c = c->next();
}
return reinterpret_cast<const char *>(c);
}
void CalculationStore::pushExpression(ValueCreator valueCreator, Expression * expression, char * location, char * * newCalculationsLocation) {
while (!valueCreator(location, *newCalculationsLocation - location, expression)
&& *newCalculationsLocation < m_buffer + k_bufferSize)
{
*newCalculationsLocation = *newCalculationsLocation + deleteLastCalculation();
assert(*newCalculationsLocation <= m_buffer + k_bufferSize);
}
if (*newCalculationsLocation >= m_buffer + k_bufferSize) {
//TODO LEA the expression does not fit in the buffer even empty
// Push undef if calculation is too big !!! (and push undef before too if needed!!!)
}
return lastCalculation->exactOutput();
}
}

View File

@@ -2,23 +2,66 @@
#define CALCULATION_CALCULATION_STORE_H
#include "calculation.h"
#include <apps/shared/expiring_pointer.h>
namespace Calculation {
/* To optimize the storage space, we use one big buffer for all calculations.
*
* The previous solution was to keep 10 calculations, each containing 3 buffers
* (for input and outputs). To optimize the storage, we then wanted to put all
* outputs in a cache where they could be deleted to add a new entry, and
* recomputed on cache miss. However, the computation depends too much on the
* state of the memory for this to be possible. For instance:
* 6->a
* a+1
* Perform some big computations that remove a+1 from the cache
* Delete a from the variable box.
* Scroll up to display a+1 : a does not exist anymore so the outputs won't be
* recomputed correctly.
*
* Now we do not cap the number of calculations and just delete the oldests to
* create space for a new calculation. */
class CalculationStore {
public:
CalculationStore() : m_startIndex(0) {}
Calculation * calculationAtIndex(int i);
Calculation * push(const char * text, Poincare::Context * context);
CalculationStore() : m_bufferEnd(m_buffer), m_numberOfCalculations(0), m_slidedBuffer(false) {}
Shared::ExpiringPointer<Calculation> calculationAtIndex(int i);
Shared::ExpiringPointer<Calculation> push(const char * text, Poincare::Context * context);
void deleteCalculationAtIndex(int i);
void deleteAll();
int numberOfCalculations();
void tidy();
int numberOfCalculations() const { return m_numberOfCalculations; }
Poincare::Expression ansExpression(Poincare::Context * context);
static constexpr int k_maxNumberOfCalculations = 10;
private:
int m_startIndex;
Calculation m_calculations[k_maxNumberOfCalculations];
static constexpr int k_bufferSize = 10 * 3 * Constant::MaxSerializedExpressionSize;
class CalculationIterator {
public:
CalculationIterator(const char * c) : m_calculation(reinterpret_cast<Calculation *>(const_cast<char *>(c))) {}
Calculation * operator*() { return m_calculation; }
bool operator!=(const CalculationIterator& it) const { return (m_calculation != it.m_calculation); }
CalculationIterator & operator++() {
m_calculation = m_calculation->next();
return *this;
}
protected:
Calculation * m_calculation;
};
CalculationIterator begin() const { return CalculationIterator(m_buffer); }
CalculationIterator end() const { return CalculationIterator(m_bufferEnd); }
int remainingBufferSize() const { assert(m_bufferEnd >= m_buffer); return k_bufferSize - (m_bufferEnd - m_buffer); }
void serializeExpression(Poincare::Expression e, char * location, char * * newCalculationsLocation);
char * slideCalculationsToEndOfBuffer(); // returns the new position of the calculations
size_t deleteLastCalculation(const char * calculationsStart = nullptr);
const char * lastCalculationPosition(const char * calculationsStart) const;
typedef bool (*ValueCreator)(char * location, size_t locationSize, void * e);
void pushExpression(ValueCreator valueCrator, Poincare::Expression * expression, char * location, char * * newCalculationsLocation);
char m_buffer[k_bufferSize];
const char * m_bufferEnd;
int m_numberOfCalculations;
bool m_slidedBuffer;
};
}

View File

@@ -49,7 +49,7 @@ bool HistoryController::handleEvent(Ion::Events::Event event) {
EditExpressionController * editController = (EditExpressionController *)parentResponder();
m_selectableTableView.deselectTable();
Container::activeApp()->setFirstResponder(editController);
Calculation * calculation = m_calculationStore->calculationAtIndex(focusRow);
Shared::ExpiringPointer<Calculation> calculation = m_calculationStore->calculationAtIndex(focusRow);
if (subviewType == SubviewType::Input) {
editController->insertTextBody(calculation->inputText());
} else {
@@ -141,7 +141,7 @@ int HistoryController::reusableCellCount(int type) {
void HistoryController::willDisplayCellForIndex(HighlightCell * cell, int index) {
HistoryViewCell * myCell = (HistoryViewCell *)cell;
myCell->setCalculation(m_calculationStore->calculationAtIndex(index), index == selectedRow() && selectedSubviewType() == SubviewType::Output);
myCell->setCalculation((m_calculationStore->calculationAtIndex(index)).pointer(), index == selectedRow() && selectedSubviewType() == SubviewType::Output);
myCell->setEven(index%2 == 0);
myCell->setHighlighted(myCell->isHighlighted());
}
@@ -150,7 +150,7 @@ KDCoordinate HistoryController::rowHeight(int j) {
if (j >= m_calculationStore->numberOfCalculations()) {
return 0;
}
Calculation * calculation = m_calculationStore->calculationAtIndex(j);
Shared::ExpiringPointer<Calculation> calculation = m_calculationStore->calculationAtIndex(j);
return calculation->height(App::app()->localContext(), j == selectedRow() && selectedSubviewType() == SubviewType::Output) + 4 * Metric::CommonSmallMargin;
}

View File

@@ -8,46 +8,32 @@
using namespace Poincare;
using namespace Calculation;
void assert_store_is(CalculationStore * store, const char * result[10]) {
void assert_store_is(CalculationStore * store, const char * * result) {
for (int i = 0; i < store->numberOfCalculations(); i++) {
quiz_assert(strcmp(store->calculationAtIndex(i)->inputText(), result[i]) == 0);
}
}
QUIZ_CASE(calculation_store_ring_buffer) {
QUIZ_CASE(calculation_store) {
Shared::GlobalContext globalContext;
CalculationStore store;
quiz_assert(CalculationStore::k_maxNumberOfCalculations == 10);
for (int i = 0; i < CalculationStore::k_maxNumberOfCalculations; i++) {
// Store is now {9, 8, 7, 6, 5, 4, 3, 2, 1, 0}
const char * result[] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"};
for (int i = 0; i < 10; i++) {
char text[2] = {(char)(i+'0'), 0};
store.push(text, &globalContext);
quiz_assert(store.numberOfCalculations() == i+1);
}
/* Store is now {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} */
const char * result[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"};
assert_store_is(&store, result);
store.push("10", &globalContext);
/* Store is now {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} */
const char * result1[10] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"};
assert_store_is(&store, result1);
for (int i = 9; i > 0; i = i-2) {
store.deleteCalculationAtIndex(i);
}
/* Store is now {1, 3, 5, 7, 9} */
const char * result2[10] = {"1", "3", "5", "7", "9", "", "", "", "", ""};
// Store is now {9, 7, 5, 3, 1}
const char * result2[] = {"9", "7", "5", "3", "1"};
assert_store_is(&store, result2);
for (int i = 5; i < CalculationStore::k_maxNumberOfCalculations; i++) {
char text[3] = {(char)(i+'0'), 0};
store.push(text, &globalContext);
quiz_assert(store.numberOfCalculations() == i+1);
}
/* Store is now {0, 2, 4, 6, 8, 5, 6, 7, 8, 9} */
const char * result3[10] = {"1", "3", "5", "7", "9", "5", "6", "7", "8", "9"};
assert_store_is(&store, result3);
store.deleteAll();
}
@@ -57,12 +43,12 @@ QUIZ_CASE(calculation_ans) {
store.push("1+3/4", &globalContext);
store.push("ans+2/3", &globalContext);
::Calculation::Calculation * lastCalculation = store.calculationAtIndex(1);
Shared::ExpiringPointer<::Calculation::Calculation> lastCalculation = store.calculationAtIndex(0);
quiz_assert(lastCalculation->displayOutput(&globalContext) == ::Calculation::Calculation::DisplayOutput::ExactAndApproximate);
quiz_assert(strcmp(lastCalculation->exactOutputText(),"29/12") == 0);
store.push("ans+0.22", &globalContext);
lastCalculation = store.calculationAtIndex(2);
lastCalculation = store.calculationAtIndex(0);
quiz_assert(lastCalculation->displayOutput(&globalContext) == ::Calculation::Calculation::DisplayOutput::ExactAndApproximateToggle);
quiz_assert(strcmp(lastCalculation->approximateOutputText(),"2.6366666666667") == 0);
@@ -71,7 +57,7 @@ QUIZ_CASE(calculation_ans) {
void assertCalculationDisplay(const char * input, ::Calculation::Calculation::DisplayOutput display, ::Calculation::Calculation::EqualSign sign, const char * exactOutput, const char * approximateOutput, Context * context, CalculationStore * store) {
store->push(input, context);
::Calculation::Calculation * lastCalculation = store->calculationAtIndex(1);
Shared::ExpiringPointer<::Calculation::Calculation> lastCalculation = store->calculationAtIndex(0);
quiz_assert(lastCalculation->displayOutput(context) == display);
if (sign != ::Calculation::Calculation::EqualSign::Unknown) {
quiz_assert(lastCalculation->exactAndApproximateDisplayedOutputsAreEqual(context) == sign);