[poincare] Split Multiplication into MultiplicationExplicite and

MultiplicationImplicite
This commit is contained in:
Émilie Feral
2019-07-23 17:14:18 +02:00
parent 00d86adf3d
commit fd25b678ce
45 changed files with 1148 additions and 986 deletions

View File

@@ -9,7 +9,7 @@
#include <poincare/number.h>
#include <poincare/symbol.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/power.h>
using namespace Poincare;
@@ -83,17 +83,17 @@ Expression CubicModel::expression(double * modelCoefficients) {
double c = modelCoefficients[2];
double d = modelCoefficients[3];
Expression addChildren[] = {
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(a),
Power::Builder(
Symbol::Builder('x'),
Decimal::Builder(3.0))),
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(b),
Power::Builder(
Symbol::Builder('x'),
Decimal::Builder(2.0))),
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(c),
Symbol::Builder('x')),
Number::DecimalNumber(d)

View File

@@ -9,7 +9,7 @@
#include <poincare/number.h>
#include <poincare/symbol.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/power.h>
using namespace Poincare;
@@ -70,12 +70,12 @@ Expression QuadraticModel::expression(double * modelCoefficients) {
double c = modelCoefficients[2];
// a*x^2+b*x+c
Expression addChildren[] = {
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(a),
Power::Builder(
Symbol::Builder('x'),
Decimal::Builder(2.0))),
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(b),
Symbol::Builder('x')),
Number::DecimalNumber(c)

View File

@@ -9,7 +9,7 @@
#include <poincare/number.h>
#include <poincare/symbol.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/power.h>
using namespace Poincare;
@@ -98,25 +98,25 @@ Expression QuarticModel::expression(double * modelCoefficients) {
double e = modelCoefficients[4];
Expression addChildren[] = {
// a*x^4
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(a),
Power::Builder(
Symbol::Builder('x'),
Decimal::Builder(4.0))),
// b*x^3
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(b),
Power::Builder(
Symbol::Builder('x'),
Decimal::Builder(3.0))),
// c*x^2
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(c),
Power::Builder(
Symbol::Builder('x'),
Decimal::Builder(2.0))),
// d*x
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(d),
Symbol::Builder('x')),
// e

View File

@@ -2,7 +2,7 @@
#include "../../shared/poincare_helpers.h"
#include <poincare/addition.h>
#include <poincare/layout_helper.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/number.h>
#include <poincare/power.h>
#include <poincare/preferences.h>
@@ -66,11 +66,11 @@ Expression TrigonometricModel::expression(double * modelCoefficients) {
// a*sin(bx+c)+d
Expression result =
Addition::Builder(
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(a),
Sine::Builder(
Addition::Builder(
Multiplication::Builder(
MultiplicationExplicite::Builder(
Number::DecimalNumber(b),
Symbol::Builder('x')),
Number::DecimalNumber(c)))),

View File

@@ -10,7 +10,7 @@
#include <poincare/opposite.h>
#include <poincare/addition.h>
#include <poincare/subtraction.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/division.h>
#include <poincare/square_root.h>
#include <poincare/power.h>
@@ -274,20 +274,20 @@ EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression exact
/* Equation ax^2+bx+c = 0 */
assert(degree == 2);
// Compute delta = b*b-4ac
Expression delta = Subtraction::Builder(Power::Builder(coefficients[1].clone(), Rational::Builder(2)), Multiplication::Builder(Rational::Builder(4), coefficients[0].clone(), coefficients[2].clone()));
Expression delta = Subtraction::Builder(Power::Builder(coefficients[1].clone(), Rational::Builder(2)), MultiplicationExplicite::Builder(Rational::Builder(4), coefficients[0].clone(), coefficients[2].clone()));
delta = delta.simplify(context, updatedComplexFormat(context), Poincare::Preferences::sharedPreferences()->angleUnit());
if (delta.isUninitialized()) {
delta = Poincare::Undefined::Builder();
}
if (delta.isRationalZero()) {
// if delta = 0, x0=x1= -b/(2a)
exactSolutions[0] = Division::Builder(Opposite::Builder(coefficients[1]), Multiplication::Builder(Rational::Builder(2), coefficients[2]));
exactSolutions[0] = Division::Builder(Opposite::Builder(coefficients[1]), MultiplicationExplicite::Builder(Rational::Builder(2), coefficients[2]));
m_numberOfSolutions = 2;
} else {
// x0 = (-b-sqrt(delta))/(2a)
exactSolutions[0] = Division::Builder(Subtraction::Builder(Opposite::Builder(coefficients[1].clone()), SquareRoot::Builder(delta.clone())), Multiplication::Builder(Rational::Builder(2), coefficients[2].clone()));
exactSolutions[0] = Division::Builder(Subtraction::Builder(Opposite::Builder(coefficients[1].clone()), SquareRoot::Builder(delta.clone())), MultiplicationExplicite::Builder(Rational::Builder(2), coefficients[2].clone()));
// x1 = (-b+sqrt(delta))/(2a)
exactSolutions[1] = Division::Builder(Addition::Builder(Opposite::Builder(coefficients[1]), SquareRoot::Builder(delta.clone())), Multiplication::Builder(Rational::Builder(2), coefficients[2]));
exactSolutions[1] = Division::Builder(Addition::Builder(Opposite::Builder(coefficients[1]), SquareRoot::Builder(delta.clone())), MultiplicationExplicite::Builder(Rational::Builder(2), coefficients[2]));
m_numberOfSolutions = 3;
}
exactSolutions[m_numberOfSolutions-1] = delta;
@@ -307,18 +307,18 @@ EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression exact
Expression * mult2Operands[3] = {new Rational::Builder(-27), new Power::Builder(a->clone(), new Rational::Builder(2), false), new Power::Builder(d->clone(), new Rational::Builder(2), false)};
Expression * mult3Operands[3] = {new Rational::Builder(-4), a->clone(), new Power::Builder(c->clone(), new Rational::Builder(3), false)};
Expression * mult4Operands[3] = {new Rational::Builder(-4), d->clone(), new Power::Builder(b->clone(), new Rational::Builder(3), false)};
Expression * add0Operands[5] = {new Multiplication::Builder(mult0Operands, 2, false), new Multiplication::Builder(mult1Operands, 5, false), new Multiplication::Builder(mult2Operands, 3, false), new Multiplication::Builder(mult3Operands, 3, false), new Multiplication::Builder(mult4Operands, 3, false)};
Expression * add0Operands[5] = {new MultiplicationExplicite::Builder(mult0Operands, 2, false), new MultiplicationExplicite::Builder(mult1Operands, 5, false), new MultiplicationExplicite::Builder(mult2Operands, 3, false), new MultiplicationExplicite::Builder(mult3Operands, 3, false), new MultiplicationExplicite::Builder(mult4Operands, 3, false)};
Expression * delta = new Addition(add0Operands, 5, false);
PoincareHelpers::Simplify(&delta, *context);
// Delta0 = b^2-3ac
Expression * mult5Operands[3] = {new Rational::Builder(3), a->clone(), c->clone()};
Expression * delta0 = new Subtraction::Builder(new Power::Builder(b->clone(), new Rational::Builder(2), false), new Multiplication::Builder(mult5Operands, 3, false), false);
Expression * delta0 = new Subtraction::Builder(new Power::Builder(b->clone(), new Rational::Builder(2), false), new MultiplicationExplicite::Builder(mult5Operands, 3, false), false);
Reduce(&delta0, *context);
if (delta->isRationalZero()) {
if (delta0->isRationalZero()) {
// delta0 = 0 && delta = 0 --> x0 = -b/(3a)
delete delta0;
m_exactSolutions[0] = new Opposite::Builder(new Division::Builder(b, new Multiplication::Builder(new Rational::Builder(3), a, false), false), false);
m_exactSolutions[0] = new Opposite::Builder(new Division::Builder(b, new MultiplicationExplicite::Builder(new Rational::Builder(3), a, false), false), false);
m_numberOfSolutions = 1;
delete c;
delete d;
@@ -326,33 +326,33 @@ EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression exact
// delta = 0 --> x0 = (9ad-bc)/(2delta0)
// --> x1 = (4abc-9a^2d-b^3)/(a*delta0)
Expression * mult6Operands[3] = {new Rational::Builder(9), a, d};
m_exactSolutions[0] = new Division::Builder(new Subtraction::Builder(new Multiplication::Builder(mult6Operands, 3, false), new Multiplication::Builder(b, c, false), false), new Multiplication::Builder(new Rational::Builder(2), delta0, false), false);
m_exactSolutions[0] = new Division::Builder(new Subtraction::Builder(new MultiplicationExplicite::Builder(mult6Operands, 3, false), new MultiplicationExplicite::Builder(b, c, false), false), new MultiplicationExplicite::Builder(new Rational::Builder(2), delta0, false), false);
Expression * mult7Operands[4] = {new Rational::Builder(4), a->clone(), b->clone(), c->clone()};
Expression * mult8Operands[3] = {new Rational::Builder(-9), new Power::Builder(a->clone(), new Rational::Builder(2), false), d->clone()};
Expression * add1Operands[3] = {new Multiplication::Builder(mult7Operands, 4, false), new Multiplication::Builder(mult8Operands,3, false), new Opposite::Builder(new Power::Builder(b->clone(), new Rational::Builder(3), false), false)};
m_exactSolutions[1] = new Division::Builder(new Addition(add1Operands, 3, false), new Multiplication::Builder(a->clone(), delta0, false), false);
Expression * add1Operands[3] = {new MultiplicationExplicite::Builder(mult7Operands, 4, false), new MultiplicationExplicite::Builder(mult8Operands,3, false), new Opposite::Builder(new Power::Builder(b->clone(), new Rational::Builder(3), false), false)};
m_exactSolutions[1] = new Division::Builder(new Addition(add1Operands, 3, false), new MultiplicationExplicite::Builder(a->clone(), delta0, false), false);
m_numberOfSolutions = 2;
}
} else {
// delta1 = 2b^3-9abc+27a^2*d
Expression * mult9Operands[4] = {new Rational::Builder(-9), a, b, c};
Expression * mult10Operands[3] = {new Rational::Builder(27), new Power::Builder(a->clone(), new Rational::Builder(2), false), d};
Expression * add2Operands[3] = {new Multiplication::Builder(new Rational::Builder(2), new Power::Builder(b->clone(), new Rational::Builder(3), false), false), new Multiplication::Builder(mult9Operands, 4, false), new Multiplication::Builder(mult10Operands, 3, false)};
Expression * add2Operands[3] = {new MultiplicationExplicite::Builder(new Rational::Builder(2), new Power::Builder(b->clone(), new Rational::Builder(3), false), false), new MultiplicationExplicite::Builder(mult9Operands, 4, false), new MultiplicationExplicite::Builder(mult10Operands, 3, false)};
Expression * delta1 = new Addition(add2Operands, 3, false);
// C = Root((delta1+sqrt(-27a^2*delta))/2, 3)
Expression * mult11Operands[3] = {new Rational::Builder(-27), new Power::Builder(a->clone(), new Rational::Builder(2), false), (*delta)->clone()};
Expression * c = new Power::Builder(new Division::Builder(new Addition(delta1, new SquareRoot(new Multiplication::Builder(mult11Operands, 3, false), false), false), new Rational::Builder(2), false), new Rational::Builder(1,3), false);
Expression * unary3roots[2] = {new Addition(new Rational::Builder(-1,2), new Division::Builder(new Multiplication::Builder(new SquareRoot(new Rational::Builder(3), false), new Constant::Builder(UCodePointMathematicalBoldSmallI), false), new Rational::Builder(2), false), false), new Subtraction::Builder(new Rational::Builder(-1,2), new Division::Builder(new Multiplication::Builder(new SquareRoot(new Rational::Builder(3), false), new Constant::Builder(UCodePointMathematicalBoldSmallI), false), new Rational::Builder(2), false), false)};
Expression * c = new Power::Builder(new Division::Builder(new Addition(delta1, new SquareRoot(new MultiplicationExplicite::Builder(mult11Operands, 3, false), false), false), new Rational::Builder(2), false), new Rational::Builder(1,3), false);
Expression * unary3roots[2] = {new Addition(new Rational::Builder(-1,2), new Division::Builder(new MultiplicationExplicite::Builder(new SquareRoot(new Rational::Builder(3), false), new Constant::Builder(UCodePointMathematicalBoldSmallI), false), new Rational::Builder(2), false), false), new Subtraction::Builder(new Rational::Builder(-1,2), new Division::Builder(new MultiplicationExplicite::Builder(new SquareRoot(new Rational::Builder(3), false), new Constant::Builder(UCodePointMathematicalBoldSmallI), false), new Rational::Builder(2), false), false)};
// x_k = -1/(3a)*(b+C*z+delta0/(zC)) with z = unary cube root
for (int k = 0; k < 3; k++) {
Expression * ccopy = c;
Expression * delta0copy = delta0;
if (k < 2) {
ccopy = new Multiplication::Builder(c->clone(), unary3roots[k], false);
ccopy = new MultiplicationExplicite::Builder(c->clone(), unary3roots[k], false);
delta0copy = delta0->clone();
}
Expression * add3Operands[3] = {b->clone(), ccopy, new Division::Builder(delta0copy, ccopy->clone(), false)};
m_exactSolutions[k] = new Multiplication::Builder(new Division::Builder(new Rational::Builder(-1), new Multiplication::Builder(new Rational::Builder(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false);
m_exactSolutions[k] = new MultiplicationExplicite::Builder(new Division::Builder(new Rational::Builder(-1), new MultiplicationExplicite::Builder(new Rational::Builder(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false);
}
m_numberOfSolutions = 3;
}

View File

@@ -91,6 +91,8 @@ poincare_src += $(addprefix poincare/src/,\
matrix_trace.cpp \
matrix_transpose.cpp \
multiplication.cpp \
multiplication_explicite.cpp \
multiplication_implicite.cpp \
n_ary_expression.cpp \
naperian_logarithm.cpp \
nth_root.cpp \

View File

@@ -2,7 +2,7 @@
#define POINCARE_COMPLEX_CARTESIAN_H
#include <poincare/expression.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
namespace Poincare {
@@ -62,7 +62,7 @@ private:
static constexpr int k_maxNumberOfNodesBeforeInterrupting = 50;
void factorAndArgumentOfFunction(Expression e, ExpressionNode::Type searchedType, Expression * factor, Expression * argument, ExpressionNode::ReductionContext reductionContext);
ComplexCartesian interruptComputationIfManyNodes();
static Multiplication squareRootHelper(Expression e, ExpressionNode::ReductionContext reductionContext);
static MultiplicationExplicite squareRootHelper(Expression e, ExpressionNode::ReductionContext reductionContext);
static Expression powerHelper(Expression norm, Expression trigo, ExpressionNode::ReductionContext reductionContext);
};

View File

@@ -61,6 +61,8 @@ class Expression : public TreeHandle {
friend class MatrixTrace;
friend class MatrixTranspose;
friend class Multiplication;
friend class MultiplicationExplicite;
friend class MultiplicationImplicite;
friend class NaperianLogarithm;
friend class NthRoot;
friend class Number;
@@ -126,6 +128,7 @@ public:
ExpressionNode::Type type() const { return node()->type(); }
ExpressionNode::Sign sign(Context * context) const { return node()->sign(context); }
bool isUndefined() const { return node()->type() == ExpressionNode::Type::Undefined || node()->type() == ExpressionNode::Type::Unreal; }
bool isMultiplication() const { return node()->type() == ExpressionNode::Type::MultiplicationExplicite || node()->type() == ExpressionNode::Type::MultiplicationImplicite; }
bool isNumber() const { return node()->isNumber(); }
bool isRationalZero() const;
bool isRationalOne() const;

View File

@@ -32,7 +32,8 @@ public:
Decimal,
Float,
Infinity,
Multiplication,
MultiplicationExplicite,
MultiplicationImplicite,
Power,
Addition,
Factorial,

View File

@@ -3,7 +3,7 @@
#include <poincare/expression.h>
#include <poincare/rational.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <cmath>
namespace Poincare {
@@ -42,7 +42,7 @@ public:
static constexpr Expression::FunctionHelper s_functionHelper = Expression::FunctionHelper("factor", 1, &UntypedBuilderOneChild<Factor>);
Multiplication createMultiplicationOfIntegerPrimeDecomposition(Integer i, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const;
MultiplicationExplicite createMultiplicationOfIntegerPrimeDecomposition(Integer i, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const;
// Expression
Expression shallowReduce(Context * context);

View File

@@ -2,12 +2,9 @@
#define POINCARE_MATRIX_H
#include <poincare/expression.h>
#include <poincare/multiplication.h>
namespace Poincare {
class Multiplication;
class MatrixNode /*final*/ : public ExpressionNode {
public:
MatrixNode() :

View File

@@ -7,20 +7,10 @@
namespace Poincare {
class MultiplicationNode /*final*/ : public NAryExpressionNode {
friend class Addition;
public:
using NAryExpressionNode::NAryExpressionNode;
// Tree
size_t size() const override { return sizeof(MultiplicationNode); }
#if POINCARE_TREE_LOG
virtual void logNodeName(std::ostream & stream) const override {
stream << "Multiplication";
}
#endif
// Properties
Type type() const override { return Type::Multiplication; }
Sign sign(Context * context) const override;
int polynomialDegree(Context * context, const char * symbolName) const override;
int getPolynomialCoefficients(Context * context, const char * symbolName, Expression coefficients[]) const override;
@@ -32,22 +22,11 @@ public:
}
template<typename T> static MatrixComplex<T> computeOnMatrices(const MatrixComplex<T> m, const MatrixComplex<T> n, Preferences::ComplexFormat complexFormat);
private:
// Property
Expression setSign(Sign s, ReductionContext reductionContext) override;
protected:
// Layout
bool childNeedsParenthesis(const TreeNode * child) const override;
Layout createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const override;
// Serialize
int serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const override;
// Simplification
Expression shallowReduce(ReductionContext reductionContext) override;
Expression shallowBeautify(ReductionContext reductionContext) override;
Expression denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const override;
private:
/* Approximation */
template<typename T> static MatrixComplex<T> computeOnMatrixAndComplex(const MatrixComplex<T> m, const std::complex<T> c, Preferences::ComplexFormat complexFormat) {
return ApproximationHelper::ElementWiseOnMatrixComplexAndComplex(m, c, complexFormat, compute<T>);
@@ -60,49 +39,13 @@ private:
}
};
class Multiplication final : public NAryExpression {
friend class AdditionNode;
friend class Addition;
friend class Power;
class Multiplication : public NAryExpression {
public:
Multiplication(const MultiplicationNode * n) : NAryExpression(n) {}
static Multiplication Builder() { return TreeHandle::NAryBuilder<Multiplication, MultiplicationNode>(); }
static Multiplication Builder(Expression e1) { return Multiplication::Builder(&e1, 1); }
static Multiplication Builder(Expression e1, Expression e2) { return Multiplication::Builder(ArrayBuilder<Expression>(e1, e2).array(), 2); }
static Multiplication Builder(Expression e1, Expression e2, Expression e3) { return Multiplication::Builder(ArrayBuilder<Expression>(e1, e2, e3).array(), 3); }
static Multiplication Builder(Expression e1, Expression e2, Expression e3, Expression e4) { return Multiplication::Builder(ArrayBuilder<Expression>(e1, e2, e3, e4).array(), 4); }
static Multiplication Builder(Expression * children, size_t numberOfChildren) { return TreeHandle::NAryBuilder<Multiplication, MultiplicationNode>(children, numberOfChildren); }
template<typename T> static void computeOnArrays(T * m, T * n, T * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns);
// Expression
Expression setSign(ExpressionNode::Sign s, ExpressionNode::ReductionContext reductionContext);
Expression shallowReduce(ExpressionNode::ReductionContext reductionContext);
Expression shallowBeautify(ExpressionNode::ReductionContext reductionContext);
int getPolynomialCoefficients(Context * context, const char * symbolName, Expression coefficients[]) const;
Expression denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const;
void sortChildrenInPlace(ExpressionOrder order, Context * context, bool canBeInterrupted) {
NAryExpression::sortChildrenInPlace(order, context, false, canBeInterrupted);
}
private:
// Simplification
Expression privateShallowReduce(ExpressionNode::ReductionContext reductionContext, bool expand, bool canBeInterrupted);
void mergeMultiplicationChildrenInPlace();
void factorizeBase(int i, int j, ExpressionNode::ReductionContext reductionContext);
void mergeInChildByFactorizingBase(int i, Expression e, ExpressionNode::ReductionContext reductionContext);
void factorizeExponent(int i, int j, ExpressionNode::ReductionContext reductionContext);
Expression distributeOnOperandAtIndex(int index, ExpressionNode::ReductionContext reductionContext);
void addMissingFactors(Expression factor, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit);
void factorizeSineAndCosine(int i, int j, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit);
static bool HaveSameNonNumeralFactors(const Expression & e1, const Expression & e2);
static bool TermsHaveIdenticalBase(const Expression & e1, const Expression & e2);
static bool TermsHaveIdenticalExponent(const Expression & e1, const Expression & e2);
static bool TermHasNumeralBase(const Expression & e);
static bool TermHasNumeralExponent(const Expression & e);
static const Expression CreateExponent(Expression e);
/* Warning: mergeNegativePower doesnot always return a multiplication:
* *(b^-1,c^-1) -> (bc)^-1 */
Expression mergeNegativePower(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit);
static inline const Expression Base(const Expression e);
};
}

View File

@@ -0,0 +1,85 @@
#ifndef POINCARE_MULTIPLICATION_EXPLICITE_H
#define POINCARE_MULTIPLICATION_EXPLICITE_H
#include <poincare/multiplication.h>
#include <poincare/n_ary_expression.h>
namespace Poincare {
class MultiplicationExpliciteNode /*final*/ : public MultiplicationNode {
friend class Addition;
public:
using MultiplicationNode::MultiplicationNode;
// Tree
size_t size() const override { return sizeof(MultiplicationExpliciteNode); }
#if POINCARE_TREE_LOG
virtual void logNodeName(std::ostream & stream) const override {
stream << "Multiplication Explicite";
}
#endif
// Properties
Type type() const override { return Type::MultiplicationExplicite; }
private:
// Property
Expression setSign(Sign s, ReductionContext reductionContext) override;
// Layout
Layout createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const override;
// Serialize
int serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const override;
// Simplification
Expression shallowReduce(ReductionContext reductionContext) override;
Expression shallowBeautify(ReductionContext reductionContext) override;
Expression denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const override;
};
class MultiplicationExplicite : public Multiplication {
friend class AdditionNode;
friend class Addition;
friend class Power;
public:
MultiplicationExplicite(const MultiplicationExpliciteNode * n) : Multiplication(n) {}
static MultiplicationExplicite Builder() { return TreeHandle::NAryBuilder<MultiplicationExplicite, MultiplicationExpliciteNode>(); }
static MultiplicationExplicite Builder(Expression e1) { return MultiplicationExplicite::Builder(&e1, 1); }
static MultiplicationExplicite Builder(Expression e1, Expression e2) { return MultiplicationExplicite::Builder(ArrayBuilder<Expression>(e1, e2).array(), 2); }
static MultiplicationExplicite Builder(Expression e1, Expression e2, Expression e3) { return MultiplicationExplicite::Builder(ArrayBuilder<Expression>(e1, e2, e3).array(), 3); }
static MultiplicationExplicite Builder(Expression e1, Expression e2, Expression e3, Expression e4) { return MultiplicationExplicite::Builder(ArrayBuilder<Expression>(e1, e2, e3, e4).array(), 4); }
static MultiplicationExplicite Builder(Expression * children, size_t numberOfChildren) { return TreeHandle::NAryBuilder<MultiplicationExplicite, MultiplicationExpliciteNode>(children, numberOfChildren); }
Expression setSign(ExpressionNode::Sign s, ExpressionNode::ReductionContext reductionContext);
Expression shallowReduce(ExpressionNode::ReductionContext reductionContext);
Expression shallowBeautify(ExpressionNode::ReductionContext reductionContext);
Expression denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const;
void sortChildrenInPlace(ExpressionOrder order, Context * context, bool canBeInterrupted) {
NAryExpression::sortChildrenInPlace(order, context, false, canBeInterrupted);
}
private:
// Simplification
Expression privateShallowReduce(ExpressionNode::ReductionContext reductionContext, bool expand, bool canBeInterrupted);
void mergeMultiplicationChildrenInPlace();
void factorizeBase(int i, int j, ExpressionNode::ReductionContext reductionContext);
void mergeInChildByFactorizingBase(int i, Expression e, ExpressionNode::ReductionContext reductionContext);
void factorizeExponent(int i, int j, ExpressionNode::ReductionContext reductionContext);
Expression distributeOnOperandAtIndex(int index, ExpressionNode::ReductionContext reductionContext);
void addMissingFactors(Expression factor, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit);
void factorizeSineAndCosine(int i, int j, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit);
static bool HaveSameNonNumeralFactors(const Expression & e1, const Expression & e2);
static bool TermsHaveIdenticalBase(const Expression & e1, const Expression & e2);
static bool TermsHaveIdenticalExponent(const Expression & e1, const Expression & e2);
static bool TermHasNumeralBase(const Expression & e);
static bool TermHasNumeralExponent(const Expression & e);
static const Expression CreateExponent(Expression e);
/* Warning: mergeNegativePower doesnot always return a multiplication:
* *(b^-1,c^-1) -> (bc)^-1 */
Expression mergeNegativePower(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit);
static inline const Expression Base(const Expression e);
};
}
#endif

View File

@@ -0,0 +1,48 @@
#ifndef POINCARE_MULTIPLICATION_IMPLICITE_H
#define POINCARE_MULTIPLICATION_IMPLICITE_H
#include <poincare/multiplication.h>
namespace Poincare {
class MultiplicationImplicite;
class MultiplicationImpliciteNode /*final*/ : public MultiplicationNode {
public:
using MultiplicationNode::MultiplicationNode;
// Tree
size_t size() const override { return sizeof(MultiplicationImpliciteNode); }
#if POINCARE_TREE_LOG
virtual void logNodeName(std::ostream & stream) const override {
stream << "Multiplication Implicite";
}
#endif
// Properties
Type type() const override { return Type::MultiplicationImplicite; }
private:
// Layout
bool childNeedsParenthesis(const TreeNode * child) const override;
Layout createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const override;
// Serialize
int serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const override;
// Simplification
Expression shallowReduce(ReductionContext reductionContext) override;
};
class MultiplicationImplicite : public Multiplication {
public:
MultiplicationImplicite(const MultiplicationImpliciteNode * n) : Multiplication(n) {}
static MultiplicationImplicite Builder(Expression e1, Expression e2) { return MultiplicationImplicite::Builder(ArrayBuilder<Expression>(e1, e2).array(), 2); }
static MultiplicationImplicite Builder(Expression * children, size_t numberOfChildren) { return TreeHandle::NAryBuilder<MultiplicationImplicite, MultiplicationImpliciteNode>(children, numberOfChildren); }
// Simplification
Expression shallowReduce(ExpressionNode::ReductionContext reductionContext);
};
}
#endif

View File

@@ -49,7 +49,8 @@
#include <poincare/matrix_inverse.h>
#include <poincare/matrix_trace.h>
#include <poincare/matrix_transpose.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_implicite.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/naperian_logarithm.h>
#include <poincare/nth_root.h>
#include <poincare/number.h>

View File

@@ -3,7 +3,7 @@
#include <poincare/serialization_helper.h>
#include <poincare/absolute_value_layout.h>
#include <poincare/complex_cartesian.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <assert.h>
#include <cmath>
@@ -55,7 +55,7 @@ Expression AbsoluteValue::shallowReduce(ExpressionNode::ReductionContext reducti
} else if (!std::isnan(app) &&
((c.isNumber() && app < 0.0f) || app <= -Expression::Epsilon<float>())) {
// abs(a) = -a with a < 0 (same comment as above to check that a < 0)
Multiplication m = Multiplication::Builder(Rational::Builder(-1), c);
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(-1), c);
replaceWithInPlace(m);
return m.shallowReduce(reductionContext);
}

View File

@@ -2,7 +2,7 @@
#include <poincare/complex_cartesian.h>
#include <poincare/layout_helper.h>
#include <poincare/matrix.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/opposite.h>
#include <poincare/power.h>
#include <poincare/serialization_helper.h>
@@ -61,7 +61,7 @@ Expression AdditionNode::shallowBeautify(ReductionContext reductionContext) {
// Addition
const Number Addition::NumeralFactor(const Expression & e) {
if (e.type() == ExpressionNode::Type::Multiplication && e.childAtIndex(0).isNumber()) {
if (e.type() == ExpressionNode::Type::MultiplicationExplicite && e.childAtIndex(0).isNumber()) {
Number result = e.childAtIndex(0).convert<Number>();
return result;
}
@@ -305,7 +305,7 @@ Expression Addition::shallowReduce(ExpressionNode::ReductionContext reductionCon
}
int Addition::NumberOfNonNumeralFactors(const Expression & e) {
if (e.type() != ExpressionNode::Type::Multiplication) {
if (e.type() != ExpressionNode::Type::MultiplicationExplicite) {
return 1; // Or (e->type() != Type::Rational);
}
int result = e.numberOfChildren();
@@ -316,7 +316,7 @@ int Addition::NumberOfNonNumeralFactors(const Expression & e) {
}
const Expression Addition::FirstNonNumeralFactor(const Expression & e) {
if (e.type() != ExpressionNode::Type::Multiplication) {
if (e.type() != ExpressionNode::Type::MultiplicationExplicite) {
return e;
}
if (e.childAtIndex(0).isNumber()) {
@@ -346,7 +346,7 @@ bool Addition::TermsHaveIdenticalNonNumeralFactors(const Expression & e1, const
return FirstNonNumeralFactor(e1).isIdenticalTo(FirstNonNumeralFactor(e2));
} else {
assert(numberOfNonNumeralFactors > 1);
return Multiplication::HaveSameNonNumeralFactors(e1, e2);
return MultiplicationExplicite::HaveSameNonNumeralFactors(e1, e2);
}
}
@@ -360,7 +360,7 @@ Expression Addition::factorizeOnCommonDenominator(ExpressionNode::ReductionConte
Addition a = Addition::Builder();
// Step 1: We want to compute the common denominator, b*d
Multiplication commonDenominator = Multiplication::Builder();
MultiplicationExplicite commonDenominator = MultiplicationExplicite::Builder();
for (int i = 0; i < numberOfChildren(); i++) {
Expression childI = childAtIndex(i);
Expression currentDenominator = childI.denominator(reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
@@ -390,14 +390,14 @@ Expression Addition::factorizeOnCommonDenominator(ExpressionNode::ReductionConte
assert(reductionContext.target() == ExpressionNode::ReductionTarget::User); // Else, before, the algorithm used User target -> put back ?
Addition numerator = Addition::Builder();
for (int i = 0; i < numberOfChildren(); i++) {
Multiplication m = Multiplication::Builder(childAtIndex(i), commonDenominator.clone());
MultiplicationExplicite m = MultiplicationExplicite::Builder(childAtIndex(i), commonDenominator.clone());
numerator.addChildAtIndexInPlace(m, numerator.numberOfChildren(), numerator.numberOfChildren());
m.privateShallowReduce(reductionContext, true, false);
}
// Step 3: Add the denominator
Power inverseDenominator = Power::Builder(commonDenominator, Rational::Builder(-1));
Multiplication result = Multiplication::Builder(numerator, inverseDenominator);
MultiplicationExplicite result = MultiplicationExplicite::Builder(numerator, inverseDenominator);
// Step 4: Simplify the numerator
numerator.shallowReduce(reductionContext);
@@ -436,9 +436,9 @@ void Addition::factorizeChildrenAtIndexesInPlace(int index1, int index2, Express
removeChildAtIndexInPlace(index2);
// Step 3: Create a multiplication
Multiplication m = Multiplication::Builder();
if (e1.type() == ExpressionNode::Type::Multiplication) {
m = static_cast<Multiplication&>(e1);
MultiplicationExplicite m = MultiplicationExplicite::Builder();
if (e1.type() == ExpressionNode::Type::MultiplicationExplicite) {
m = static_cast<MultiplicationExplicite&>(e1);
} else {
replaceChildAtIndexInPlace(index1, m);
m.addChildAtIndexInPlace(e1, 0, 0);

View File

@@ -5,7 +5,6 @@
#include <poincare/cosine.h>
#include <poincare/constant.h>
#include <poincare/division.h>
#include <poincare/multiplication.h>
#include <poincare/naperian_logarithm.h>
#include <poincare/rational.h>
#include <poincare/square_root.h>
@@ -84,12 +83,12 @@ void ComplexCartesian::factorAndArgumentOfFunction(Expression e, ExpressionNode:
*argument = e.childAtIndex(0);
return;
}
if (e.type() == ExpressionNode::Type::Multiplication) {
if (e.type() == ExpressionNode::Type::MultiplicationExplicite) {
for (int i = 0; i < e.numberOfChildren(); i++) {
if (e.childAtIndex(i).type() == searchedType) {
*argument = e.childAtIndex(i).childAtIndex(0);
*factor = e.clone();
static_cast<Multiplication *>(factor)->removeChildAtIndexInPlace(i);
static_cast<MultiplicationExplicite *>(factor)->removeChildAtIndexInPlace(i);
*factor = factor->shallowReduce(reductionContext);
Expression positiveFactor = factor->makePositiveAnyNegativeNumeralFactor(reductionContext);
*factor = positiveFactor.isUninitialized() ? *factor : positiveFactor;
@@ -158,7 +157,7 @@ Expression ComplexCartesian::argument(ExpressionNode::ReductionContext reduction
}
// Then, compute sign(b) * π/2 - atan(a/b)
Expression signb = SignFunction::Builder(b);
Expression signbPi2 = Multiplication::Builder(Rational::Builder(1,2), signb, Constant::Builder(UCodePointGreekSmallLetterPi));
Expression signbPi2 = MultiplicationExplicite::Builder(Rational::Builder(1,2), signb, Constant::Builder(UCodePointGreekSmallLetterPi));
signb.shallowReduce(reductionContext);
Expression sub = Subtraction::Builder(signbPi2, arcTangent);
signbPi2.shallowReduce(reductionContext);
@@ -169,7 +168,7 @@ Expression ComplexCartesian::argument(ExpressionNode::ReductionContext reduction
Expression signa = SignFunction::Builder(a).shallowReduce(reductionContext);
Subtraction sub = Subtraction::Builder(Rational::Builder(1), signa);
signa.shallowReduce(reductionContext);
Multiplication mul = Multiplication::Builder(Rational::Builder(1,2), Constant::Builder(UCodePointGreekSmallLetterPi), sub);
MultiplicationExplicite mul = MultiplicationExplicite::Builder(Rational::Builder(1,2), Constant::Builder(UCodePointGreekSmallLetterPi), sub);
sub.shallowReduce(reductionContext);
return mul;
}
@@ -185,10 +184,10 @@ ComplexCartesian ComplexCartesian::inverse(ExpressionNode::ReductionContext redu
denominatorReal.shallowReduce(reductionContext);
Expression denominatorImagInv = Power::Builder(denominatorImag, Rational::Builder(-1));
denominatorImag.shallowReduce(reductionContext);
Multiplication A = Multiplication::Builder(a, denominatorRealInv);
MultiplicationExplicite A = MultiplicationExplicite::Builder(a, denominatorRealInv);
denominatorRealInv.shallowReduce(reductionContext);
Expression numeratorImag = Multiplication::Builder(Rational::Builder(-1), b);
Multiplication B = Multiplication::Builder(numeratorImag, denominatorImagInv);
Expression numeratorImag = MultiplicationExplicite::Builder(Rational::Builder(-1), b);
MultiplicationExplicite B = MultiplicationExplicite::Builder(numeratorImag, denominatorImagInv);
numeratorImag.shallowReduce(reductionContext);
denominatorImagInv.shallowReduce(reductionContext);
ComplexCartesian result = ComplexCartesian::Builder(A,B);
@@ -197,13 +196,13 @@ ComplexCartesian ComplexCartesian::inverse(ExpressionNode::ReductionContext redu
return result.interruptComputationIfManyNodes();
}
Multiplication ComplexCartesian::squareRootHelper(Expression e, ExpressionNode::ReductionContext reductionContext) {
MultiplicationExplicite ComplexCartesian::squareRootHelper(Expression e, ExpressionNode::ReductionContext reductionContext) {
//(1/2)*sqrt(2*e)
Multiplication doubleE = Multiplication::Builder(Rational::Builder(2), e);
MultiplicationExplicite doubleE = MultiplicationExplicite::Builder(Rational::Builder(2), e);
e.shallowReduce(reductionContext);
Expression sqrt = SquareRoot::Builder(doubleE);
doubleE.shallowReduce(reductionContext);
Multiplication result = Multiplication::Builder(Rational::Builder(1,2), sqrt);
MultiplicationExplicite result = MultiplicationExplicite::Builder(Rational::Builder(1,2), sqrt);
sqrt.shallowReduce(reductionContext);
return result;
}
@@ -218,11 +217,11 @@ ComplexCartesian ComplexCartesian::squareRoot(ExpressionNode::ReductionContext r
// A = (1/2)*sqrt(2*(sqrt(a^2+b^2)+a))
Addition normAdda = Addition::Builder(normA, a.clone());
normA.shallowReduce(reductionContext);
Multiplication A = squareRootHelper(normAdda, reductionContext);
MultiplicationExplicite A = squareRootHelper(normAdda, reductionContext);
// B = B: (1/2)*sqrt(2*(sqrt(a^2+b^2)-a))
Subtraction normSuba = Subtraction::Builder(normB, a);
normB.shallowReduce(reductionContext);
Multiplication B = squareRootHelper(normSuba, reductionContext);
MultiplicationExplicite B = squareRootHelper(normSuba, reductionContext);
// B = B: (1/2)*sqrt(2*(sqrt(a^2+b^2)-a))*sign(b)
Expression signb = SignFunction::Builder(b);
B.addChildAtIndexInPlace(signb, B.numberOfChildren(), B.numberOfChildren());
@@ -246,7 +245,7 @@ ComplexCartesian ComplexCartesian::powerInteger(int n, ExpressionNode::Reduction
ComplexCartesian result;
Expression bpow = Power::Builder(b, Rational::Builder(n));
if (n/2%2 == 1) {
Expression temp = Multiplication::Builder(Rational::Builder(-1), bpow);
Expression temp = MultiplicationExplicite::Builder(Rational::Builder(-1), bpow);
bpow.shallowReduce(reductionContext);
bpow = temp;
}
@@ -270,7 +269,7 @@ ComplexCartesian ComplexCartesian::powerInteger(int n, ExpressionNode::Reduction
Expression bclone = i == n ? b : b.clone();
Power apow = Power::Builder(aclone, Rational::Builder(n-i));
Power bpow = Power::Builder(bclone, Rational::Builder(i));
Multiplication m = Multiplication::Builder(binom, apow, bpow);
MultiplicationExplicite m = MultiplicationExplicite::Builder(binom, apow, bpow);
binom.shallowReduce(reductionContext.context());
apow.shallowReduce(reductionContext);
bpow.shallowReduce(reductionContext);
@@ -300,14 +299,14 @@ ComplexCartesian ComplexCartesian::multiply(ComplexCartesian & other, Expression
Expression d = other.imag();
// (a+ib) * (c+id) = (ac-bd)+i*(ad+bc)
// Compute ac-bd
Expression ac = Multiplication::Builder(a.clone(), c.clone());
Expression bd = Multiplication::Builder(b.clone(), d.clone());
Expression ac = MultiplicationExplicite::Builder(a.clone(), c.clone());
Expression bd = MultiplicationExplicite::Builder(b.clone(), d.clone());
Subtraction A = Subtraction::Builder(ac, bd);
ac.shallowReduce(reductionContext);
bd.shallowReduce(reductionContext);
// Compute ad+bc
Expression ad = Multiplication::Builder(a, d);
Expression bc = Multiplication::Builder(b, c);
Expression ad = MultiplicationExplicite::Builder(a, d);
Expression bc = MultiplicationExplicite::Builder(b, c);
Addition B = Addition::Builder(ad, bc);
ad.shallowReduce(reductionContext);
bc.shallowReduce(reductionContext);
@@ -318,7 +317,7 @@ ComplexCartesian ComplexCartesian::multiply(ComplexCartesian & other, Expression
}
Expression ComplexCartesian::powerHelper(Expression norm, Expression trigo, ExpressionNode::ReductionContext reductionContext) {
Multiplication m = Multiplication::Builder(norm, trigo);
MultiplicationExplicite m = MultiplicationExplicite::Builder(norm, trigo);
norm.shallowReduce(reductionContext);
trigo.shallowReduce(reductionContext);
return m;
@@ -334,20 +333,20 @@ ComplexCartesian ComplexCartesian::power(ComplexCartesian & other, ExpressionNod
// R = r^c*e^(-th*d)
Expression rpowc = Power::Builder(rclone, c.clone());
rclone.shallowReduce(reductionContext);
Expression thmuld = Multiplication::Builder(Rational::Builder(-1), thclone, d.clone());
Expression thmuld = MultiplicationExplicite::Builder(Rational::Builder(-1), thclone, d.clone());
thclone.shallowReduce(reductionContext);
Expression exp = Power::Builder(Constant::Builder(UCodePointScriptSmallE), thmuld);
thmuld.shallowReduce(reductionContext);
Multiplication norm = Multiplication::Builder(rpowc, exp);
MultiplicationExplicite norm = MultiplicationExplicite::Builder(rpowc, exp);
rpowc.shallowReduce(reductionContext);
exp.shallowReduce(reductionContext);
// TH = d*ln(r)+c*th
Expression lnr = NaperianLogarithm::Builder(r);
r.shallowReduce(reductionContext);
Multiplication dlnr = Multiplication::Builder(d, lnr);
MultiplicationExplicite dlnr = MultiplicationExplicite::Builder(d, lnr);
lnr.shallowReduce(reductionContext);
Multiplication thc = Multiplication::Builder(th, c);
MultiplicationExplicite thc = MultiplicationExplicite::Builder(th, c);
th.shallowReduce(reductionContext);
Expression argument = Addition::Builder(thc, dlnr);
thc.shallowReduce(reductionContext);

View File

@@ -1,7 +1,7 @@
#include <poincare/confidence_interval.h>
#include <poincare/addition.h>
#include <poincare/matrix.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/power.h>
#include <poincare/layout_helper.h>
#include <poincare/serialization_helper.h>
@@ -84,7 +84,7 @@ Expression ConfidenceInterval::shallowReduce(ExpressionNode::ReductionContext re
// Compute [r0-1/sqr(r1), r0+1/sqr(r1)]
Expression sqr = Power::Builder(r1, Rational::Builder(-1, 2));
Matrix matrix = Matrix::Builder();
matrix.addChildAtIndexInPlace(Addition::Builder(r0.clone(), Multiplication::Builder(Rational::Builder(-1), sqr.clone())), 0, 0);
matrix.addChildAtIndexInPlace(Addition::Builder(r0.clone(), MultiplicationExplicite::Builder(Rational::Builder(-1), sqr.clone())), 0, 0);
matrix.addChildAtIndexInPlace(Addition::Builder(r0, sqr), 1, 1);
matrix.setDimensions(1, 2);
replaceWithInPlace(matrix);

View File

@@ -1,7 +1,7 @@
#include <poincare/conjugate.h>
#include <poincare/conjugate_layout.h>
#include <poincare/complex_cartesian.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
@@ -49,7 +49,7 @@ Expression Conjugate::shallowReduce(ExpressionNode::ReductionContext reductionCo
}
if (c.type() == ExpressionNode::Type::ComplexCartesian) {
ComplexCartesian complexChild = static_cast<ComplexCartesian &>(c);
Multiplication m = Multiplication::Builder(Rational::Builder(-1), complexChild.imag());
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(-1), complexChild.imag());
complexChild.replaceChildAtIndexInPlace(1, m);
m.shallowReduce(reductionContext);
replaceWithInPlace(complexChild);

View File

@@ -1,6 +1,7 @@
#include <poincare/determinant.h>
#include <poincare/addition.h>
#include <poincare/matrix.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/layout_helper.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
@@ -61,8 +62,8 @@ Expression Determinant::shallowReduce(ExpressionNode::ReductionContext reduction
} else if (dim == 2) {
/* |a b|
* Determinant of |c d| is ad-bc */
Multiplication ad = Multiplication::Builder(m0.matrixChild(0,0), m0.matrixChild(1,1));
Multiplication bc = Multiplication::Builder(m0.matrixChild(0,1), m0.matrixChild(1,0));
MultiplicationExplicite ad = MultiplicationExplicite::Builder(m0.matrixChild(0,0), m0.matrixChild(1,1));
MultiplicationExplicite bc = MultiplicationExplicite::Builder(m0.matrixChild(0,1), m0.matrixChild(1,0));
result = Subtraction::Builder(ad, bc);
ad.shallowReduce(reductionContext);
bc.shallowReduce(reductionContext);
@@ -81,12 +82,12 @@ Expression Determinant::shallowReduce(ExpressionNode::ReductionContext reduction
Expression i = m0.matrixChild(2,2);
constexpr int additionChildrenCount = 6;
Expression additionChildren[additionChildrenCount] = {
Multiplication::Builder(a.clone(), e.clone(), i.clone()),
Multiplication::Builder(b.clone(), f.clone(), g.clone()),
Multiplication::Builder(c.clone(), d.clone(), h.clone()),
Multiplication::Builder(Rational::Builder(-1), c, e, g),
Multiplication::Builder(Rational::Builder(-1), b, d, i),
Multiplication::Builder(Rational::Builder(-1), a, f, h)};
MultiplicationExplicite::Builder(a.clone(), e.clone(), i.clone()),
MultiplicationExplicite::Builder(b.clone(), f.clone(), g.clone()),
MultiplicationExplicite::Builder(c.clone(), d.clone(), h.clone()),
MultiplicationExplicite::Builder(Rational::Builder(-1), c, e, g),
MultiplicationExplicite::Builder(Rational::Builder(-1), b, d, i),
MultiplicationExplicite::Builder(Rational::Builder(-1), a, f, h)};
result = Addition::Builder(additionChildren, additionChildrenCount);
for (int i = 0; i < additionChildrenCount; i++) {
additionChildren[i].shallowReduce(reductionContext);

View File

@@ -1,6 +1,7 @@
#include <poincare/division.h>
#include <poincare/fraction_layout.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/multiplication_implicite.h>
#include <poincare/opposite.h>
#include <poincare/power.h>
#include <poincare/rational.h>
@@ -28,8 +29,8 @@ bool DivisionNode::childNeedsParenthesis(const TreeNode * child) const {
if (static_cast<const ExpressionNode *>(child)->type() == Type::Rational && !static_cast<const RationalNode *>(child)->denominator().isOne()) {
return true;
}
Type types[] = {Type::Subtraction, Type::Opposite, Type::Multiplication, Type::Division, Type::Addition};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 5);
Type types[] = {Type::Subtraction, Type::Opposite, Type::MultiplicationExplicite, Type::MultiplicationImplicite, Type::Division, Type::Addition};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 6);
}
Layout DivisionNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
@@ -80,7 +81,7 @@ Expression Division::shallowReduce(ExpressionNode::ReductionContext reductionCon
/* For matrices: we decided that A/B is computed as A = A/B * B so A/B = AB^-1
* (it could have been A = B * A/B so A/B = B^-1*A). */
Expression p = Power::Builder(childAtIndex(1), Rational::Builder(-1));
Multiplication m = Multiplication::Builder(childAtIndex(0), p);
MultiplicationExplicite m = MultiplicationExplicite::Builder(childAtIndex(0), p);
p.shallowReduce(reductionContext); // For instance: Division::Builder(2,1). p would be 1^(-1) which can be simplified
replaceWithInPlace(m);
return m.shallowReduce(reductionContext);

View File

@@ -108,7 +108,7 @@ bool Expression::IsRandom(const Expression e, Context * context) {
}
bool Expression::IsNAry(const Expression e, Context * context) {
return e.type() == ExpressionNode::Type::Addition || e.type() == ExpressionNode::Type::Multiplication;
return e.type() == ExpressionNode::Type::Addition || e.type() == ExpressionNode::Type::MultiplicationExplicite || e.type() == ExpressionNode::Type::MultiplicationImplicite;
}
bool Expression::IsMatrix(const Expression e, Context * context) {
@@ -278,7 +278,7 @@ Expression Expression::makePositiveAnyNegativeNumeralFactor(ExpressionNode::Redu
return setSign(ExpressionNode::Sign::Positive, reductionContext);
}
// The expression is a multiplication whose numeral factor is negative
if (type() == ExpressionNode::Type::Multiplication && numberOfChildren() > 0 && childAtIndex(0).isNumber() && childAtIndex(0).sign(reductionContext.context()) == ExpressionNode::Sign::Negative) {
if (isMultiplication() && numberOfChildren() > 0 && childAtIndex(0).isNumber() && childAtIndex(0).sign(reductionContext.context()) == ExpressionNode::Sign::Negative) {
Multiplication m = convert<Multiplication>();
if (m.childAtIndex(0).type() == ExpressionNode::Type::Rational && m.childAtIndex(0).convert<Rational>().isMinusOne()) {
// The negative numeral factor is -1, we just remove it
@@ -559,12 +559,12 @@ Expression Expression::mapOnMatrixFirstChild(ExpressionNode::ReductionContext re
Expression Expression::radianToDegree() {
// e*180/Pi
return Multiplication::Builder(*this, Rational::Builder(180), Power::Builder(Constant::Builder(UCodePointGreekSmallLetterPi), Rational::Builder(-1)));
return MultiplicationExplicite::Builder(*this, Rational::Builder(180), Power::Builder(Constant::Builder(UCodePointGreekSmallLetterPi), Rational::Builder(-1)));
}
Expression Expression::degreeToRadian() {
// e*Pi/180
return Multiplication::Builder(*this, Rational::Builder(1, 180), Constant::Builder(UCodePointGreekSmallLetterPi));
return MultiplicationExplicite::Builder(*this, Rational::Builder(1, 180), Constant::Builder(UCodePointGreekSmallLetterPi));
}
Expression Expression::reduce(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
@@ -660,7 +660,7 @@ Expression Expression::CreateComplexExpression(Expression ra, Expression tb, Pre
if (isOneTb) {
imag = Constant::Builder(UCodePointMathematicalBoldSmallI);
} else {
imag = Multiplication::Builder(tb , Constant::Builder(UCodePointMathematicalBoldSmallI));
imag = MultiplicationImplicite::Builder(tb , Constant::Builder(UCodePointMathematicalBoldSmallI));
}
}
if (imag.isUninitialized()) {
@@ -691,7 +691,7 @@ Expression Expression::CreateComplexExpression(Expression ra, Expression tb, Pre
if (isOneTb) {
arg = Constant::Builder(UCodePointMathematicalBoldSmallI);
} else {
arg = Multiplication::Builder(tb, Constant::Builder(UCodePointMathematicalBoldSmallI));
arg = MultiplicationImplicite::Builder(tb, Constant::Builder(UCodePointMathematicalBoldSmallI));
}
if (isNegativeTb) {
arg = Opposite::Builder(arg);
@@ -703,7 +703,7 @@ Expression Expression::CreateComplexExpression(Expression ra, Expression tb, Pre
} else if (norm.isUninitialized()) {
return exp;
} else {
return Multiplication::Builder(norm, exp);
return MultiplicationImplicite::Builder(norm, exp);
}
}
}

View File

@@ -150,8 +150,11 @@ void print_expression(const Expression e, int indentationLevel) {
case ExpressionNode::Type::MatrixTranspose:
std::cout << "MatrixTranspose";
break;
case ExpressionNode::Type::Multiplication:
std::cout << "Multiplication";
case ExpressionNode::Type::MultiplicationExplicite:
std::cout << "Multiplication Explicite";
break;
case ExpressionNode::Type::MultiplicationImplicite:
std::cout << "Multiplication Implicite";
break;
case ExpressionNode::Type::NaperianLogarithm:
std::cout << "NaperianLogarithm";

View File

@@ -34,10 +34,10 @@ Expression FactorNode::shallowBeautify(ReductionContext reductionContext) {
return Factor(this).shallowBeautify(reductionContext);
}
Multiplication Factor::createMultiplicationOfIntegerPrimeDecomposition(Integer i, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
MultiplicationExplicite Factor::createMultiplicationOfIntegerPrimeDecomposition(Integer i, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
assert(!i.isZero());
assert(!i.isNegative());
Multiplication m = Multiplication::Builder();
MultiplicationExplicite m = MultiplicationExplicite::Builder();
Integer factors[Arithmetic::k_maxNumberOfPrimeFactors];
Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors];
int numberOfPrimeFactors = Arithmetic::PrimeFactorization(i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors);
@@ -82,13 +82,13 @@ Expression Factor::shallowBeautify(ExpressionNode::ReductionContext reductionCon
replaceWithInPlace(r);
return r;
}
Multiplication numeratorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r.unsignedIntegerNumerator(), reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
MultiplicationExplicite numeratorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r.unsignedIntegerNumerator(), reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
if (numeratorDecomp.numberOfChildren() == 0) {
return replaceWithUndefinedInPlace();
}
Expression result = numeratorDecomp.squashUnaryHierarchyInPlace();
if (!r.integerDenominator().isOne()) {
Multiplication denominatorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r.integerDenominator(), reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
MultiplicationExplicite denominatorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r.integerDenominator(), reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
if (denominatorDecomp.numberOfChildren() == 0) {
return replaceWithUndefinedInPlace();
}

View File

@@ -28,8 +28,8 @@ bool FactorialNode::childNeedsParenthesis(const TreeNode * child) const {
if (static_cast<const ExpressionNode *>(child)->type() == Type::Rational && !static_cast<const RationalNode *>(child)->denominator().isOne()) {
return true;
}
Type types[] = {Type::Subtraction, Type::Opposite, Type::Multiplication, Type::Division, Type::Addition, Type::Power};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 6);
Type types[] = {Type::Subtraction, Type::Opposite, Type::MultiplicationExplicite, Type::MultiplicationImplicite, Type::Division, Type::Addition, Type::Power};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 7);
}
// Simplification
@@ -111,7 +111,7 @@ Expression Factorial::shallowReduce(ExpressionNode::ReductionContext reductionCo
Expression Factorial::shallowBeautify() {
// +(a,b)! ->(+(a,b))!
if (childAtIndex(0).type() == ExpressionNode::Type::Addition
|| childAtIndex(0).type() == ExpressionNode::Type::Multiplication
|| childAtIndex(0).isMultiplication()
|| childAtIndex(0).type() == ExpressionNode::Type::Power)
{
Expression result = Factorial::Builder(Parenthesis::Builder(childAtIndex(0)));

View File

@@ -6,7 +6,7 @@
#include <poincare/division.h>
#include <poincare/infinity.h>
#include <poincare/layout_helper.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/naperian_logarithm.h>
#include <poincare/power.h>
#include <poincare/rational.h>
@@ -164,20 +164,20 @@ Expression Logarithm::shallowReduce(ExpressionNode::ReductionContext reductionCo
Expression x = p.childAtIndex(0);
Expression y = p.childAtIndex(1);
replaceChildInPlace(p, x);
Multiplication mult = Multiplication::Builder(y);
MultiplicationExplicite mult = MultiplicationExplicite::Builder(y);
replaceWithInPlace(mult);
mult.addChildAtIndexInPlace(*this, 1, 1); // --> y*log(x,b)
shallowReduce(reductionContext); // reduce log (ie log(e, e) = 1)
return mult.shallowReduce(reductionContext);
}
// log(x*y, b)->log(x,b)+log(y, b) if x,y>0
if (c.type() == ExpressionNode::Type::Multiplication) {
if (c.type() == ExpressionNode::Type::MultiplicationExplicite) {
Addition a = Addition::Builder();
for (int i = 0; i < c.numberOfChildren()-1; i++) {
Expression factor = c.childAtIndex(i);
if (factor.sign(reductionContext.context()) == ExpressionNode::Sign::Positive) {
Expression newLog = clone();
static_cast<Multiplication &>(c).removeChildInPlace(factor, factor.numberOfChildren());
static_cast<MultiplicationExplicite &>(c).removeChildInPlace(factor, factor.numberOfChildren());
newLog.replaceChildAtIndexInPlace(0, factor);
a.addChildAtIndexInPlace(newLog, a.numberOfChildren(), a.numberOfChildren());
newLog.shallowReduce(reductionContext);
@@ -324,7 +324,7 @@ Expression Logarithm::splitLogarithmInteger(Integer i, bool isDenominator, Expre
if (!isDenominator) {
return e;
}
Multiplication m = Multiplication::Builder(Rational::Builder(-1), e);
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(-1), e);
return m;
}
Addition a = Addition::Builder();
@@ -334,7 +334,7 @@ Expression Logarithm::splitLogarithmInteger(Integer i, bool isDenominator, Expre
}
Logarithm e = clone().convert<Logarithm>();
e.replaceChildAtIndexInPlace(0, Rational::Builder(factors[index]));
Multiplication m = Multiplication::Builder(Rational::Builder(coefficients[index]), e);
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(coefficients[index]), e);
e.simpleShallowReduce(reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
a.addChildAtIndexInPlace(m, a.numberOfChildren(), a.numberOfChildren());
m.shallowReduce(reductionContext);

View File

@@ -2,6 +2,7 @@
#include <poincare/division.h>
#include <poincare/matrix_complex.h>
#include <poincare/matrix_layout.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
#include <poincare/subtraction.h>
@@ -210,7 +211,7 @@ Matrix Matrix::rowCanonize(ExpressionNode::ReductionContext reductionContext) {
Expression factor = matrixChild(i, k);
for (int j = k+1; j < n; j++) {
Expression opIJ = matrixChild(i, j);
Expression newOpIJ = Subtraction::Builder(opIJ, Multiplication::Builder(matrixChild(h, j).clone(), factor.clone()));
Expression newOpIJ = Subtraction::Builder(opIJ, MultiplicationExplicite::Builder(matrixChild(h, j).clone(), factor.clone()));
replaceChildAtIndexInPlace(i*n+j, newOpIJ);
newOpIJ.childAtIndex(1).shallowReduce(reductionContext);
newOpIJ = newOpIJ.shallowReduce(reductionContext);

View File

@@ -1,4 +1,5 @@
#include <poincare/matrix_dimension.h>
#include <poincare/matrix_complex.h>
#include <poincare/layout_helper.h>
#include <poincare/matrix.h>
#include <poincare/rational.h>

View File

@@ -1,14 +1,13 @@
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/addition.h>
#include <poincare/arithmetic.h>
#include <poincare/division.h>
#include <poincare/layout_helper.h>
#include <poincare/matrix.h>
#include <poincare/opposite.h>
#include <poincare/parenthesis.h>
#include <poincare/power.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
#include <poincare/subtraction.h>
#include <poincare/tangent.h>
#include <poincare/undefined.h>
@@ -67,11 +66,6 @@ MatrixComplex<T> MultiplicationNode::computeOnMatrices(const MatrixComplex<T> m,
return result;
}
Expression MultiplicationNode::setSign(Sign s, ReductionContext reductionContext) {
assert(s == ExpressionNode::Sign::Positive);
return Multiplication(this).setSign(s, reductionContext);
}
bool MultiplicationNode::childNeedsParenthesis(const TreeNode * child) const {
if ((static_cast<const ExpressionNode *>(child)->isNumber() && Number(static_cast<const NumberNode *>(child)).sign() == Sign::Negative)
|| static_cast<const ExpressionNode *>(child)->type() == ExpressionNode::Type::Opposite)
@@ -85,32 +79,6 @@ bool MultiplicationNode::childNeedsParenthesis(const TreeNode * child) const {
return static_cast<const ExpressionNode *>(child)->isOfType(types, 2);
}
Layout MultiplicationNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
constexpr int stringMaxSize = CodePoint::MaxCodePointCharLength + 1;
char string[stringMaxSize];
SerializationHelper::CodePoint(string, stringMaxSize, UCodePointMiddleDot);
return LayoutHelper::Infix(Multiplication(this), floatDisplayMode, numberOfSignificantDigits, string);
}
int MultiplicationNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
constexpr int stringMaxSize = CodePoint::MaxCodePointCharLength + 1;
char string[stringMaxSize];
SerializationHelper::CodePoint(string, stringMaxSize, UCodePointMultiplicationSign);
return SerializationHelper::Infix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, string);
}
Expression MultiplicationNode::shallowReduce(ReductionContext reductionContext) {
return Multiplication(this).shallowReduce(reductionContext);
}
Expression MultiplicationNode::shallowBeautify(ReductionContext reductionContext) {
return Multiplication(this).shallowBeautify(reductionContext);
}
Expression MultiplicationNode::denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
return Multiplication(this).denominator(context, complexFormat, angleUnit);
}
/* Multiplication */
template<typename T>
@@ -126,82 +94,6 @@ void Multiplication::computeOnArrays(T * m, T * n, T * result, int mNumberOfColu
}
}
Expression Multiplication::setSign(ExpressionNode::Sign s, ExpressionNode::ReductionContext reductionContext) {
assert(s == ExpressionNode::Sign::Positive);
for (int i = 0; i < numberOfChildren(); i++) {
if (childAtIndex(i).sign(reductionContext.context()) == ExpressionNode::Sign::Negative) {
replaceChildAtIndexInPlace(i, childAtIndex(i).setSign(s, reductionContext));
}
}
return shallowReduce(reductionContext);
}
Expression Multiplication::shallowReduce(ExpressionNode::ReductionContext reductionContext) {
return privateShallowReduce(reductionContext, true, true);
}
Expression Multiplication::shallowBeautify(ExpressionNode::ReductionContext reductionContext) {
/* Beautifying a Multiplication consists in several possible operations:
* - Add Opposite ((-3)*x -> -(3*x), useful when printing fractions)
* - Adding parenthesis if needed (a*(b+c) is not a*b+c)
* - Creating a Division if there's either a term with a power of -1 (a.b^(-1)
* shall become a/b) or a non-integer rational term (3/2*a -> (3*a)/2). */
// Step 1: Turn -n*A into -(n*A)
Expression noNegativeNumeral = makePositiveAnyNegativeNumeralFactor(reductionContext);
// If one negative numeral factor was made positive, we turn the expression in an Opposite
if (!noNegativeNumeral.isUninitialized()) {
Opposite o = Opposite::Builder();
noNegativeNumeral.replaceWithInPlace(o);
o.replaceChildAtIndexInPlace(0, noNegativeNumeral);
return o;
}
/* Step 2: Merge negative powers: a*b^(-1)*c^(-pi)*d = a*(b*c^pi)^(-1)
* This also turns 2/3*a into 2*a*3^(-1) */
Expression thisExp = mergeNegativePower(reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
if (thisExp.type() == ExpressionNode::Type::Power) {
return thisExp.shallowBeautify(reductionContext);
}
assert(thisExp.type() == ExpressionNode::Type::Multiplication);
// Step 3: Add Parenthesis if needed
for (int i = 0; i < thisExp.numberOfChildren(); i++) {
const Expression o = thisExp.childAtIndex(i);
if (o.type() == ExpressionNode::Type::Addition) {
Parenthesis p = Parenthesis::Builder(o);
thisExp.replaceChildAtIndexInPlace(i, p);
}
}
// Step 4: Create a Division if needed
for (int i = 0; i < numberOfChildren(); i++) {
Expression childI = thisExp.childAtIndex(i);
if (!(childI.type() == ExpressionNode::Type::Power && childI.childAtIndex(1).type() == ExpressionNode::Type::Rational && childI.childAtIndex(1).convert<Rational>().isMinusOne())) {
continue;
}
// Let's remove the denominator-to-be from this
Expression denominatorOperand = childI.childAtIndex(0);
removeChildInPlace(childI, childI.numberOfChildren());
Expression numeratorOperand = shallowReduce(reductionContext);
// Delete unnecessary parentheses on numerator
if (numeratorOperand.type() == ExpressionNode::Type::Parenthesis) {
Expression numeratorChild0 = numeratorOperand.childAtIndex(0);
numeratorOperand.replaceWithInPlace(numeratorChild0);
numeratorOperand = numeratorChild0;
}
Expression originalParent = numeratorOperand.parent();
Division d = Division::Builder();
numeratorOperand.replaceWithInPlace(d);
d.replaceChildAtIndexInPlace(0, numeratorOperand);
d.replaceChildAtIndexInPlace(1, denominatorOperand);
return d.shallowBeautify(reductionContext);
}
return thisExp;
}
int Multiplication::getPolynomialCoefficients(Context * context, const char * symbolName, Expression coefficients[]) const {
int deg = polynomialDegree(context, symbolName);
if (deg < 0 || deg > Expression::k_maxPolynomialDegree) {
@@ -225,606 +117,18 @@ int Multiplication::getPolynomialCoefficients(Context * context, const char * sy
int jbis = j > degI ? degI : j;
for (int l = 0; l <= jbis ; l++) {
// Always copy the a and b coefficients are they are used multiple times
a.addChildAtIndexInPlace(Multiplication::Builder(intermediateCoefficients[l].clone(), coefficients[j-l].clone()), a.numberOfChildren(), a.numberOfChildren());
a.addChildAtIndexInPlace(MultiplicationExplicite::Builder(intermediateCoefficients[l].clone(), coefficients[j-l].clone()), a.numberOfChildren(), a.numberOfChildren());
}
/* a(j) and b(j) are used only to compute coefficient at rank >= j, we
* can delete them as we compute new coefficient by decreasing ranks. */
coefficients[j] = a;
}
// new coefficients[0] = a(0)*b(0)
coefficients[0] = Multiplication::Builder(coefficients[0], intermediateCoefficients[0]);
coefficients[0] = MultiplicationExplicite::Builder(coefficients[0], intermediateCoefficients[0]);
}
return deg;
}
Expression Multiplication::denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
// Merge negative power: a*b^-1*c^(-Pi)*d = a*(b*c^Pi)^-1
// WARNING: we do not want to change the expression but to create a new one.
Multiplication thisClone = clone().convert<Multiplication>();
Expression e = thisClone.mergeNegativePower(context, complexFormat, angleUnit);
if (e.type() == ExpressionNode::Type::Power) {
return e.denominator(context, complexFormat, angleUnit);
} else {
assert(e.type() == ExpressionNode::Type::Multiplication);
for (int i = 0; i < e.numberOfChildren(); i++) {
// a*b^(-1)*... -> a*.../b
if (e.childAtIndex(i).type() == ExpressionNode::Type::Power
&& e.childAtIndex(i).childAtIndex(1).type() == ExpressionNode::Type::Rational
&& e.childAtIndex(i).childAtIndex(1).convert<Rational>().isMinusOne())
{
return e.childAtIndex(i).childAtIndex(0);
}
}
}
return Expression();
}
Expression Multiplication::privateShallowReduce(ExpressionNode::ReductionContext reductionContext, bool shouldExpand, bool canBeInterrupted) {
{
Expression e = Expression::defaultShallowReduce();
if (e.isUndefined()) {
return e;
}
}
/* Step 1: MultiplicationNode is associative, so let's start by merging children
* which also are multiplications themselves. */
mergeMultiplicationChildrenInPlace();
// Step 2: Sort the children
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, reductionContext.context(), true);
// Step 3: Handle matrices
/* Thanks to the simplification order, all matrix children (if any) are the
* last children. */
Expression lastChild = childAtIndex(numberOfChildren()-1);
if (lastChild.type() == ExpressionNode::Type::Matrix) {
Matrix resultMatrix = static_cast<Matrix &>(lastChild);
// Use the last matrix child as the final matrix
int n = resultMatrix.numberOfRows();
int m = resultMatrix.numberOfColumns();
/* Scan accross the children to find other matrices. The last child is the
* result matrix so we start at numberOfChildren()-2. */
int multiplicationChildIndex = numberOfChildren()-2;
while (multiplicationChildIndex >= 0) {
Expression currentChild = childAtIndex(multiplicationChildIndex);
if (currentChild.type() != ExpressionNode::Type::Matrix) {
break;
}
Matrix currentMatrix = static_cast<Matrix &>(currentChild);
int currentN = currentMatrix.numberOfRows();
int currentM = currentMatrix.numberOfColumns();
if (currentM != n) {
// Matrices dimensions do not match for multiplication
return replaceWithUndefinedInPlace();
}
/* Create the matrix resulting of the multiplication of the current matrix
* and the result matrix
* resultMatrix
* i2= 0..m
* +-+-+-+-+-+
* | | | | | |
* +-+-+-+-+-+
* j=0..n | | | | | |
* +-+-+-+-+-+
* | | | | | |
* +-+-+-+-+-+
* currentMatrix
* j=0..currentM
* +---+---+---+ +-+-+-+-+-+
* |  |   |  | | | | | | |
* +---+---+---+ +-+-+-+-+-+
* i1=0..currentN |  |   |  | | |e| | | |
* +---+---+---+ +-+-+-+-+-+
* |   |   | | | | | | | |
* +---+---+---+ +-+-+-+-+-+
* */
int newResultN = currentN;
int newResultM = m;
Matrix newResult = Matrix::Builder();
for (int i = 0; i < newResultN; i++) {
for (int j = 0; j < newResultM; j++) {
Addition a = Addition::Builder();
for (int k = 0; k < n; k++) {
Expression e = Multiplication::Builder(currentMatrix.matrixChild(i, k).clone(), resultMatrix.matrixChild(k, j).clone());
a.addChildAtIndexInPlace(e, a.numberOfChildren(), a.numberOfChildren());
e.shallowReduce(reductionContext);
}
newResult.addChildAtIndexInPlace(a, newResult.numberOfChildren(), newResult.numberOfChildren());
a.shallowReduce(reductionContext);
}
}
newResult.setDimensions(newResultN, newResultM);
n = newResultN;
m = newResultM;
removeChildInPlace(currentMatrix, currentMatrix.numberOfChildren());
replaceChildInPlace(resultMatrix, newResult);
resultMatrix = newResult;
multiplicationChildIndex--;
}
/* Distribute the remaining multiplication children on the matrix children,
* if there are no oether matrices (such as a non reduced confidence
* interval). */
if (multiplicationChildIndex >= 0) {
if (SortedIsMatrix(childAtIndex(multiplicationChildIndex), reductionContext.context())) {
return *this;
}
removeChildInPlace(resultMatrix, resultMatrix.numberOfChildren());
for (int i = 0; i < n*m; i++) {
Multiplication m = clone().convert<Multiplication>();
Expression entryI = resultMatrix.childAtIndex(i);
resultMatrix.replaceChildInPlace(entryI, m);
m.addChildAtIndexInPlace(entryI, m.numberOfChildren(), m.numberOfChildren());
m.shallowReduce(reductionContext);
}
}
replaceWithInPlace(resultMatrix);
return resultMatrix.shallowReduce(reductionContext);
}
/* Step 4: Gather like terms. For example, turn pi^2*pi^3 into pi^5. Thanks to
* the simplification order, such terms are guaranteed to be next to each
* other. */
int i = 0;
while (i < numberOfChildren()-1) {
Expression oi = childAtIndex(i);
Expression oi1 = childAtIndex(i+1);
if (oi.recursivelyMatches(Expression::IsRandom, reductionContext.context(), true)) {
// Do not factorize random or randint
i++;
continue;
}
if (TermsHaveIdenticalBase(oi, oi1)) {
bool shouldFactorizeBase = true;
if (TermHasNumeralBase(oi)) {
/* Combining powers of a given rational isn't straightforward. Indeed,
* there are two cases we want to deal with:
* - 2*2^(1/2) or 2*2^pi, we want to keep as-is
* - 2^(1/2)*2^(3/2) we want to combine. */
shouldFactorizeBase = oi.type() == ExpressionNode::Type::Power && oi1.type() == ExpressionNode::Type::Power;
}
if (shouldFactorizeBase) {
factorizeBase(i, i+1, reductionContext);
continue;
}
} else if (TermHasNumeralBase(oi) && TermHasNumeralBase(oi1) && TermsHaveIdenticalExponent(oi, oi1)) {
factorizeExponent(i, i+1, reductionContext);
continue;
}
i++;
}
/* Step 5: We look for terms of form sin(x)^p*cos(x)^q with p, q rational of
* opposite signs. We replace them by either:
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
if (reductionContext.target() == ExpressionNode::ReductionTarget::User) {
for (int i = 0; i < numberOfChildren(); i++) {
Expression o1 = childAtIndex(i);
if (Base(o1).type() == ExpressionNode::Type::Sine && TermHasNumeralExponent(o1)) {
const Expression x = Base(o1).childAtIndex(0);
/* Thanks to the SimplificationOrder, Cosine-base factors are after
* Sine-base factors */
for (int j = i+1; j < numberOfChildren(); j++) {
Expression o2 = childAtIndex(j);
if (Base(o2).type() == ExpressionNode::Type::Cosine && TermHasNumeralExponent(o2) && Base(o2).childAtIndex(0).isIdenticalTo(x)) {
factorizeSineAndCosine(i, j, reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
break;
}
}
}
}
/* Replacing sin/cos by tan factors may have mixed factors and factors are
* guaranteed to be sorted (according ot SimplificationOrder) at the end of
* shallowReduce */
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, reductionContext.context(), true);
}
/* Step 6: We remove rational children that appeared in the middle of sorted
* children. It's important to do this after having factorized because
* factorization can lead to new ones. Indeed:
* pi^(-1)*pi-> 1
* i*i -> -1
* 2^(1/2)*2^(1/2) -> 2
* sin(x)*cos(x) -> 1*tan(x)
* Last, we remove the only rational child if it is one and not the only
* child. */
i = 1;
while (i < numberOfChildren()) {
Expression o = childAtIndex(i);
if (o.type() == ExpressionNode::Type::Rational && static_cast<Rational &>(o).isOne()) {
removeChildAtIndexInPlace(i);
continue;
}
if (o.isNumber()) {
if (childAtIndex(0).isNumber()) {
Number o0 = childAtIndex(0).convert<Rational>();
Number m = Number::Multiplication(o0, static_cast<Number &>(o));
replaceChildAtIndexInPlace(0, m);
removeChildAtIndexInPlace(i);
} else {
// Number child has to be first
removeChildAtIndexInPlace(i);
addChildAtIndexInPlace(o, 0, numberOfChildren());
}
continue;
}
i++;
}
/* Step 7: If the first child is zero, the multiplication result is zero. We
* do this after merging the rational children, because the merge takes care
* of turning 0*inf into undef. We still have to check that no other child
* involves an inifity expression to avoid reducing 0*e^(inf) to 0.
* If the first child is 1, we remove it if there are other children. */
{
const Expression c = childAtIndex(0);
if (c.type() == ExpressionNode::Type::Rational && static_cast<const Rational &>(c).isZero()) {
// Check that other children don't match inf
bool infiniteFactor = false;
for (int i = 1; i < numberOfChildren(); i++) {
infiniteFactor = childAtIndex(i).recursivelyMatches(Expression::IsInfinity, reductionContext.context());
if (infiniteFactor) {
break;
}
}
if (!infiniteFactor) {
replaceWithInPlace(c);
return c;
}
}
if (c.type() == ExpressionNode::Type::Rational && static_cast<const Rational &>(c).isOne() && numberOfChildren() > 1) {
removeChildAtIndexInPlace(0);
}
}
/* Step 8: Expand multiplication over addition children if any. For example,
* turn (a+b)*c into a*c + b*c. We do not want to do this step right now if
* the parent is a multiplication or if the reduction is done bottom up to
* avoid missing factorization such as (x+y)^(-1)*((a+b)*(x+y)).
* Note: This step must be done after Step 4, otherwise we wouldn't be able to
* reduce expressions such as (x+y)^(-1)*(x+y)(a+b).
* If there is a random somewhere, do not expand. */
Expression p = parent();
bool hasRandom = recursivelyMatches(Expression::IsRandom, reductionContext.context(), true);
if (shouldExpand
&& (p.isUninitialized() || p.type() != ExpressionNode::Type::Multiplication)
&& !hasRandom)
{
for (int i = 0; i < numberOfChildren(); i++) {
if (childAtIndex(i).type() == ExpressionNode::Type::Addition) {
return distributeOnOperandAtIndex(i, reductionContext);
}
}
}
// Step 9: Let's remove the multiplication altogether if it has one child
Expression result = squashUnaryHierarchyInPlace();
if (result != *this) {
return result;
}
/* Step 10: Let's bubble up the complex operator if possible
* 3 cases:
* - All children are real, we do nothing (allChildrenAreReal == 1)
* - One of the child is non-real and not a ComplexCartesian: it means a
* complex expression could not be resolved as a ComplexCartesian, we cannot
* do anything about it now (allChildrenAreReal == -1)
* - All children are either real or ComplexCartesian (allChildrenAreReal == 0)
* We can bubble up ComplexCartesian nodes.
* Do not simplify if there are randoms !*/
if (!hasRandom && allChildrenAreReal(reductionContext.context()) == 0) {
int nbChildren = numberOfChildren();
int i = nbChildren-1;
// Children are sorted so ComplexCartesian nodes are at the end
assert(childAtIndex(i).type() == ExpressionNode::Type::ComplexCartesian);
// First, we merge all ComplexCartesian children into one
ComplexCartesian child = childAtIndex(i).convert<ComplexCartesian>();
removeChildAtIndexInPlace(i);
i--;
while (i >= 0) {
Expression e = childAtIndex(i);
if (e.type() != ExpressionNode::Type::ComplexCartesian) {
// the Multiplication is sorted so ComplexCartesian nodes are the last ones
break;
}
child = child.multiply(static_cast<ComplexCartesian &>(e), reductionContext);
removeChildAtIndexInPlace(i);
i--;
}
// The real children are both factors of the real and the imaginary multiplication
Multiplication real = *this;
Multiplication imag = clone().convert<Multiplication>();
real.addChildAtIndexInPlace(child.real(), real.numberOfChildren(), real.numberOfChildren());
imag.addChildAtIndexInPlace(child.imag(), real.numberOfChildren(), real.numberOfChildren());
ComplexCartesian newComplexCartesian = ComplexCartesian::Builder();
replaceWithInPlace(newComplexCartesian);
newComplexCartesian.replaceChildAtIndexInPlace(0, real);
newComplexCartesian.replaceChildAtIndexInPlace(1, imag);
real.shallowReduce(reductionContext);
imag.shallowReduce(reductionContext);
return newComplexCartesian.shallowReduce();
}
return result;
}
void Multiplication::mergeMultiplicationChildrenInPlace() {
// Multiplication is associative: a*(b*c)->a*b*c
int i = 0;
while (i < numberOfChildren()) {
Expression c = childAtIndex(i);
if (c.type() == ExpressionNode::Type::Multiplication) {
mergeChildrenAtIndexInPlace(c, i); // TODO: ensure that matrix children are not swapped to implement MATRIX_EXACT_REDUCING
continue;
}
i++;
}
}
void Multiplication::factorizeBase(int i, int j, ExpressionNode::ReductionContext reductionContext) {
/* This function factorizes two children which have a common base. For example
* if this is Multiplication::Builder(pi^2, pi^3), then pi^2 and pi^3 could be merged
* and this turned into Multiplication::Builder(pi^5). */
Expression e = childAtIndex(j);
// Step 1: Get rid of the child j
removeChildAtIndexInPlace(j);
// Step 2: Merge child j in child i by factorizing base
mergeInChildByFactorizingBase(i, e, reductionContext);
}
void Multiplication::mergeInChildByFactorizingBase(int i, Expression e, ExpressionNode::ReductionContext reductionContext) {
/* This function replace the child at index i by its factorization with e. e
* and childAtIndex(i) are supposed to have a common base. */
// Step 1: Find the new exponent
Expression s = Addition::Builder(CreateExponent(childAtIndex(i)), CreateExponent(e)); // pi^2*pi^3 -> pi^(2+3) -> pi^5
// Step 2: Create the new Power
Expression p = Power::Builder(Base(childAtIndex(i)), s); // pi^2*pi^-2 -> pi^0 -> 1
s.shallowReduce(reductionContext);
// Step 3: Replace one of the child
replaceChildAtIndexInPlace(i, p);
p = p.shallowReduce(reductionContext);
/* Step 4: Reducing the new power might have turned it into a multiplication,
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
* node with this. */
if (p.type() == ExpressionNode::Type::Multiplication) {
mergeMultiplicationChildrenInPlace();
}
}
void Multiplication::factorizeExponent(int i, int j, ExpressionNode::ReductionContext reductionContext) {
/* This function factorizes children which share a common exponent. For
* example, it turns Multiplication::Builder(2^x,3^x) into Multiplication::Builder(6^x). */
// Step 1: Find the new base
Expression m = Multiplication::Builder(Base(childAtIndex(i)), Base(childAtIndex(j))); // 2^x*3^x -> (2*3)^x -> 6^x
// Step 2: Get rid of one of the children
removeChildAtIndexInPlace(j);
// Step 3: Replace the other child
childAtIndex(i).replaceChildAtIndexInPlace(0, m);
// Step 4: Reduce expressions
m.shallowReduce(reductionContext);
Expression p = childAtIndex(i).shallowReduce(reductionContext); // 2^x*(1/2)^x -> (2*1/2)^x -> 1
/* Step 5: Reducing the new power might have turned it into a multiplication,
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
* node with this. */
if (p.type() == ExpressionNode::Type::Multiplication) {
mergeMultiplicationChildrenInPlace();
}
}
Expression Multiplication::distributeOnOperandAtIndex(int i, ExpressionNode::ReductionContext reductionContext) {
/* This method creates a*...*b*y... + a*...*c*y... + ... from
* a*...*(b+c+...)*y... */
assert(i >= 0 && i < numberOfChildren());
assert(childAtIndex(i).type() == ExpressionNode::Type::Addition);
Addition a = Addition::Builder();
Expression childI = childAtIndex(i);
int numberOfAdditionTerms = childI.numberOfChildren();
for (int j = 0; j < numberOfAdditionTerms; j++) {
Multiplication m = clone().convert<Multiplication>();
m.replaceChildAtIndexInPlace(i, childI.childAtIndex(j));
// Reduce m: pi^(-1)*(pi + x) -> pi^(-1)*pi + pi^(-1)*x -> 1 + pi^(-1)*x
a.addChildAtIndexInPlace(m, a.numberOfChildren(), a.numberOfChildren());
m.shallowReduce(reductionContext);
}
replaceWithInPlace(a);
return a.shallowReduce(reductionContext); // Order terms, put under a common denominator if needed
}
void Multiplication::addMissingFactors(Expression factor, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
if (factor.type() == ExpressionNode::Type::Multiplication) {
for (int j = 0; j < factor.numberOfChildren(); j++) {
addMissingFactors(factor.childAtIndex(j), context, complexFormat, angleUnit);
}
return;
}
/* Special case when factor is a Rational: if 'this' has already a rational
* child, we replace it by its LCM with factor ; otherwise, we simply add
* factor as a child. */
if (numberOfChildren() > 0 && childAtIndex(0).type() == ExpressionNode::Type::Rational && factor.type() == ExpressionNode::Type::Rational) {
assert(static_cast<Rational &>(factor).integerDenominator().isOne());
assert(childAtIndex(0).convert<Rational>().integerDenominator().isOne());
Integer lcm = Arithmetic::LCM(static_cast<Rational &>(factor).unsignedIntegerNumerator(), childAtIndex(0).convert<Rational>().unsignedIntegerNumerator());
if (lcm.isOverflow()) {
addChildAtIndexInPlace(Rational::Builder(static_cast<Rational &>(factor).unsignedIntegerNumerator()), 1, numberOfChildren());
return;
}
replaceChildAtIndexInPlace(0, Rational::Builder(lcm));
return;
}
if (factor.type() != ExpressionNode::Type::Rational) {
/* If factor is not a rational, we merge it with the child of identical
* base if any. Otherwise, we add it as an new child. */
ExpressionNode::ReductionContext reductionContext = ExpressionNode::ReductionContext(context, complexFormat, angleUnit, ExpressionNode::ReductionTarget::User);
for (int i = 0; i < numberOfChildren(); i++) {
if (TermsHaveIdenticalBase(childAtIndex(i), factor)) {
Expression sub = Subtraction::Builder(CreateExponent(childAtIndex(i)), CreateExponent(factor)).deepReduce(reductionContext);
if (sub.sign(reductionContext.context()) == ExpressionNode::Sign::Negative) { // index[0] < index[1]
sub = Opposite::Builder(sub);
if (factor.type() == ExpressionNode::Type::Power) {
factor.replaceChildAtIndexInPlace(1, sub);
} else {
factor = Power::Builder(factor, sub);
}
sub.shallowReduce(reductionContext);
mergeInChildByFactorizingBase(i, factor, reductionContext);
} else if (sub.sign(reductionContext.context()) == ExpressionNode::Sign::Unknown) {
mergeInChildByFactorizingBase(i, factor, reductionContext);
}
return;
}
}
}
addChildAtIndexInPlace(factor.clone(), 0, numberOfChildren());
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
}
void Multiplication::factorizeSineAndCosine(int i, int j, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
/* This function turn sin(x)^p * cos(x)^q into either:
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
const Expression x = Base(childAtIndex(i)).childAtIndex(0);
// We check before that p and q were numbers
Number p = CreateExponent(childAtIndex(i)).convert<Number>();
Number q = CreateExponent(childAtIndex(j)).convert<Number>();
// If p and q have the same sign, we cannot replace them by a tangent
if ((int)p.sign()*(int)q.sign() > 0) {
return;
}
Number sumPQ = Number::Addition(p, q);
Number absP = p.clone().convert<Number>().setSign(ExpressionNode::Sign::Positive);
Number absQ = q.clone().convert<Number>().setSign(ExpressionNode::Sign::Positive);
Expression tan = Tangent::Builder(x.clone());
ExpressionNode::ReductionContext userReductionContext = ExpressionNode::ReductionContext(context, complexFormat, angleUnit, ExpressionNode::ReductionTarget::User);
if (Number::NaturalOrder(absP, absQ) < 0) {
// Replace sin(x) by tan(x) or sin(x)^p by tan(x)^p
if (p.isRationalOne()) {
replaceChildAtIndexInPlace(i, tan);
} else {
replaceChildAtIndexInPlace(i, Power::Builder(tan, p));
}
childAtIndex(i).shallowReduce(userReductionContext);
// Replace cos(x)^q by cos(x)^(p+q)
replaceChildAtIndexInPlace(j, Power::Builder(Base(childAtIndex(j)), sumPQ));
childAtIndex(j).shallowReduce(userReductionContext);
} else {
// Replace cos(x)^q by tan(x)^(-q)
Expression newPower = Power::Builder(tan, Number::Multiplication(q, Rational::Builder(-1)));
newPower.childAtIndex(1).shallowReduce(userReductionContext);
replaceChildAtIndexInPlace(j, newPower);
newPower.shallowReduce(userReductionContext);
// Replace sin(x)^p by sin(x)^(p+q)
replaceChildAtIndexInPlace(i, Power::Builder(Base(childAtIndex(i)), sumPQ));
childAtIndex(i).shallowReduce(userReductionContext);
}
}
bool Multiplication::HaveSameNonNumeralFactors(const Expression & e1, const Expression & e2) {
assert(e1.numberOfChildren() > 0);
assert(e2.numberOfChildren() > 0);
int numberOfNonNumeralFactors1 = e1.childAtIndex(0).isNumber() ? e1.numberOfChildren()-1 : e1.numberOfChildren();
int numberOfNonNumeralFactors2 = e2.childAtIndex(0).isNumber() ? e2.numberOfChildren()-1 : e2.numberOfChildren();
if (numberOfNonNumeralFactors1 != numberOfNonNumeralFactors2) {
return false;
}
int firstNonNumeralOperand1 = e1.childAtIndex(0).isNumber() ? 1 : 0;
int firstNonNumeralOperand2 = e2.childAtIndex(0).isNumber() ? 1 : 0;
for (int i = 0; i < numberOfNonNumeralFactors1; i++) {
Expression currentChild1 = e1.childAtIndex(firstNonNumeralOperand1+i);
if (currentChild1.isRandom()
|| !(currentChild1.isIdenticalTo(e2.childAtIndex(firstNonNumeralOperand2+i))))
{
return false;
}
}
return true;
}
const Expression Multiplication::CreateExponent(Expression e) {
Expression result = e.type() == ExpressionNode::Type::Power ? e.childAtIndex(1).clone() : Rational::Builder(1);
return result;
}
bool Multiplication::TermsHaveIdenticalBase(const Expression & e1, const Expression & e2) {
return Base(e1).isIdenticalTo(Base(e2));
}
bool Multiplication::TermsHaveIdenticalExponent(const Expression & e1, const Expression & e2) {
/* Note: We will return false for e1=2 and e2=Pi, even though one could argue
* that these have the same exponent whose value is 1. */
return e1.type() == ExpressionNode::Type::Power && e2.type() == ExpressionNode::Type::Power && (e1.childAtIndex(1).isIdenticalTo(e2.childAtIndex(1)));
}
bool Multiplication::TermHasNumeralBase(const Expression & e) {
return Base(e).isNumber();
}
bool Multiplication::TermHasNumeralExponent(const Expression & e) {
if (e.type() != ExpressionNode::Type::Power) {
return true;
}
if (e.childAtIndex(1).isNumber()) {
return true;
}
return false;
}
Expression Multiplication::mergeNegativePower(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
/* mergeNegativePower groups all factors that are power of form a^(-b) together
* for instance, a^(-1)*b^(-c)*c = c*(a*b^c)^(-1) */
Multiplication m = Multiplication::Builder();
// Special case for rational p/q: if q != 1, q should be at denominator
if (childAtIndex(0).type() == ExpressionNode::Type::Rational && !childAtIndex(0).convert<Rational>().integerDenominator().isOne()) {
Rational r = childAtIndex(0).convert<Rational>();
m.addChildAtIndexInPlace(Rational::Builder(r.integerDenominator()), 0, m.numberOfChildren());
if (r.signedIntegerNumerator().isOne()) {
removeChildAtIndexInPlace(0);
} else {
replaceChildAtIndexInPlace(0, Rational::Builder(r.signedIntegerNumerator()));
}
}
int i = 0;
// Look for power of form a^(-b)
while (i < numberOfChildren()) {
if (childAtIndex(i).type() == ExpressionNode::Type::Power) {
Expression p = childAtIndex(i);
Expression positivePIndex = p.childAtIndex(1).makePositiveAnyNegativeNumeralFactor( ExpressionNode::ReductionContext(context, complexFormat, angleUnit, ExpressionNode::ReductionTarget::User));
if (!positivePIndex.isUninitialized()) {
// Remove a^(-b) from the Multiplication
removeChildAtIndexInPlace(i);
// Add a^b to m
m.addChildAtIndexInPlace(p, m.numberOfChildren(), m.numberOfChildren());
if (p.childAtIndex(1).isRationalOne()) {
p.replaceWithInPlace(p.childAtIndex(0));
}
// We do not increment i because we removed one child from the Multiplication
continue;
}
}
i++;
}
if (m.numberOfChildren() == 0) {
return *this;
}
m.sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
Power p = Power::Builder(m.squashUnaryHierarchyInPlace(), Rational::Builder(-1));
addChildAtIndexInPlace(p, 0, numberOfChildren());
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
return squashUnaryHierarchyInPlace();
}
const Expression Multiplication::Base(const Expression e) {
if (e.type() == ExpressionNode::Type::Power) {
return e.childAtIndex(0);
}
return e;
}
template MatrixComplex<float> MultiplicationNode::computeOnComplexAndMatrix<float>(std::complex<float> const, const MatrixComplex<float>, Preferences::ComplexFormat);
template MatrixComplex<double> MultiplicationNode::computeOnComplexAndMatrix<double>(std::complex<double> const, const MatrixComplex<double>, Preferences::ComplexFormat);
template Complex<float> MultiplicationNode::compute<float>(const std::complex<float>, const std::complex<float>, Preferences::ComplexFormat);

View File

@@ -0,0 +1,718 @@
#include <poincare/multiplication_explicite.h>
#include <poincare/addition.h>
#include <poincare/arithmetic.h>
#include <poincare/division.h>
#include <poincare/layout_helper.h>
#include <poincare/matrix.h>
#include <poincare/opposite.h>
#include <poincare/parenthesis.h>
#include <poincare/power.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
#include <poincare/subtraction.h>
#include <poincare/tangent.h>
#include <poincare/undefined.h>
#include <cmath>
#include <ion.h>
#include <assert.h>
namespace Poincare {
Expression MultiplicationExpliciteNode::setSign(Sign s, ReductionContext reductionContext) {
assert(s == ExpressionNode::Sign::Positive);
return MultiplicationExplicite(this).setSign(s, reductionContext);
}
Layout MultiplicationExpliciteNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
constexpr int stringMaxSize = CodePoint::MaxCodePointCharLength + 1;
char string[stringMaxSize];
SerializationHelper::CodePoint(string, stringMaxSize, UCodePointMultiplicationSign);
return LayoutHelper::Infix(MultiplicationExplicite(this), floatDisplayMode, numberOfSignificantDigits, string);
}
int MultiplicationExpliciteNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
constexpr int stringMaxSize = CodePoint::MaxCodePointCharLength + 1;
char string[stringMaxSize];
SerializationHelper::CodePoint(string, stringMaxSize, UCodePointMultiplicationSign);
return SerializationHelper::Infix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, string);
}
Expression MultiplicationExpliciteNode::shallowReduce(ReductionContext reductionContext) {
return MultiplicationExplicite(this).shallowReduce(reductionContext);
}
Expression MultiplicationExpliciteNode::shallowBeautify(ReductionContext reductionContext) {
return MultiplicationExplicite(this).shallowBeautify(reductionContext);
}
Expression MultiplicationExpliciteNode::denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
return MultiplicationExplicite(this).denominator(context, complexFormat, angleUnit);
}
/* MultiplicationExplicite */
Expression MultiplicationExplicite::setSign(ExpressionNode::Sign s, ExpressionNode::ReductionContext reductionContext) {
assert(s == ExpressionNode::Sign::Positive);
for (int i = 0; i < numberOfChildren(); i++) {
if (childAtIndex(i).sign(reductionContext.context()) == ExpressionNode::Sign::Negative) {
replaceChildAtIndexInPlace(i, childAtIndex(i).setSign(s, reductionContext));
}
}
return shallowReduce(reductionContext);
}
Expression MultiplicationExplicite::shallowReduce(ExpressionNode::ReductionContext reductionContext) {
return privateShallowReduce(reductionContext, true, true);
}
Expression MultiplicationExplicite::shallowBeautify(ExpressionNode::ReductionContext reductionContext) {
/* Beautifying a Multiplication consists in several possible operations:
* - Add Opposite ((-3)*x -> -(3*x), useful when printing fractions)
* - Adding parenthesis if needed (a*(b+c) is not a*b+c)
* - Creating a Division if there's either a term with a power of -1 (a.b^(-1)
* shall become a/b) or a non-integer rational term (3/2*a -> (3*a)/2). */
// Step 1: Turn -n*A into -(n*A)
Expression noNegativeNumeral = makePositiveAnyNegativeNumeralFactor(reductionContext);
// If one negative numeral factor was made positive, we turn the expression in an Opposite
if (!noNegativeNumeral.isUninitialized()) {
Opposite o = Opposite::Builder();
noNegativeNumeral.replaceWithInPlace(o);
o.replaceChildAtIndexInPlace(0, noNegativeNumeral);
return o;
}
/* Step 2: Merge negative powers: a*b^(-1)*c^(-pi)*d = a*(b*c^pi)^(-1)
* This also turns 2/3*a into 2*a*3^(-1) */
Expression thisExp = mergeNegativePower(reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
if (thisExp.type() == ExpressionNode::Type::Power) {
return thisExp.shallowBeautify(reductionContext);
}
assert(thisExp.type() == ExpressionNode::Type::MultiplicationExplicite);
// Step 3: Add Parenthesis if needed
for (int i = 0; i < thisExp.numberOfChildren(); i++) {
const Expression o = thisExp.childAtIndex(i);
if (o.type() == ExpressionNode::Type::Addition) {
Parenthesis p = Parenthesis::Builder(o);
thisExp.replaceChildAtIndexInPlace(i, p);
}
}
// Step 4: Create a Division if needed
for (int i = 0; i < numberOfChildren(); i++) {
Expression childI = thisExp.childAtIndex(i);
if (!(childI.type() == ExpressionNode::Type::Power && childI.childAtIndex(1).type() == ExpressionNode::Type::Rational && childI.childAtIndex(1).convert<Rational>().isMinusOne())) {
continue;
}
// Let's remove the denominator-to-be from this
Expression denominatorOperand = childI.childAtIndex(0);
removeChildInPlace(childI, childI.numberOfChildren());
Expression numeratorOperand = shallowReduce(reductionContext);
// Delete unnecessary parentheses on numerator
if (numeratorOperand.type() == ExpressionNode::Type::Parenthesis) {
Expression numeratorChild0 = numeratorOperand.childAtIndex(0);
numeratorOperand.replaceWithInPlace(numeratorChild0);
numeratorOperand = numeratorChild0;
}
Expression originalParent = numeratorOperand.parent();
Division d = Division::Builder();
numeratorOperand.replaceWithInPlace(d);
d.replaceChildAtIndexInPlace(0, numeratorOperand);
d.replaceChildAtIndexInPlace(1, denominatorOperand);
return d.shallowBeautify(reductionContext);
}
return thisExp;
}
Expression MultiplicationExplicite::denominator(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) const {
// Merge negative power: a*b^-1*c^(-Pi)*d = a*(b*c^Pi)^-1
// WARNING: we do not want to change the expression but to create a new one.
MultiplicationExplicite thisClone = clone().convert<MultiplicationExplicite>();
Expression e = thisClone.mergeNegativePower(context, complexFormat, angleUnit);
if (e.type() == ExpressionNode::Type::Power) {
return e.denominator(context, complexFormat, angleUnit);
} else {
assert(e.type() == ExpressionNode::Type::MultiplicationExplicite);
for (int i = 0; i < e.numberOfChildren(); i++) {
// a*b^(-1)*... -> a*.../b
if (e.childAtIndex(i).type() == ExpressionNode::Type::Power
&& e.childAtIndex(i).childAtIndex(1).type() == ExpressionNode::Type::Rational
&& e.childAtIndex(i).childAtIndex(1).convert<Rational>().isMinusOne())
{
return e.childAtIndex(i).childAtIndex(0);
}
}
}
return Expression();
}
Expression MultiplicationExplicite::privateShallowReduce(ExpressionNode::ReductionContext reductionContext, bool shouldExpand, bool canBeInterrupted) {
{
Expression e = Expression::defaultShallowReduce();
if (e.isUndefined()) {
return e;
}
}
/* Step 1: MultiplicationExpliciteNode is associative, so let's start by merging children
* which also are multiplications themselves. */
mergeMultiplicationChildrenInPlace();
// Step 2: Sort the children
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, reductionContext.context(), true);
// Step 3: Handle matrices
/* Thanks to the simplification order, all matrix children (if any) are the
* last children. */
Expression lastChild = childAtIndex(numberOfChildren()-1);
if (lastChild.type() == ExpressionNode::Type::Matrix) {
Matrix resultMatrix = static_cast<Matrix &>(lastChild);
// Use the last matrix child as the final matrix
int n = resultMatrix.numberOfRows();
int m = resultMatrix.numberOfColumns();
/* Scan accross the children to find other matrices. The last child is the
* result matrix so we start at numberOfChildren()-2. */
int multiplicationChildIndex = numberOfChildren()-2;
while (multiplicationChildIndex >= 0) {
Expression currentChild = childAtIndex(multiplicationChildIndex);
if (currentChild.type() != ExpressionNode::Type::Matrix) {
break;
}
Matrix currentMatrix = static_cast<Matrix &>(currentChild);
int currentN = currentMatrix.numberOfRows();
int currentM = currentMatrix.numberOfColumns();
if (currentM != n) {
// Matrices dimensions do not match for multiplication
return replaceWithUndefinedInPlace();
}
/* Create the matrix resulting of the multiplication of the current matrix
* and the result matrix
* resultMatrix
* i2= 0..m
* +-+-+-+-+-+
* | | | | | |
* +-+-+-+-+-+
* j=0..n | | | | | |
* +-+-+-+-+-+
* | | | | | |
* +-+-+-+-+-+
* currentMatrix
* j=0..currentM
* +---+---+---+ +-+-+-+-+-+
* |  |   |  | | | | | | |
* +---+---+---+ +-+-+-+-+-+
* i1=0..currentN |  |   |  | | |e| | | |
* +---+---+---+ +-+-+-+-+-+
* |   |   | | | | | | | |
* +---+---+---+ +-+-+-+-+-+
* */
int newResultN = currentN;
int newResultM = m;
Matrix newResult = Matrix::Builder();
for (int i = 0; i < newResultN; i++) {
for (int j = 0; j < newResultM; j++) {
Addition a = Addition::Builder();
for (int k = 0; k < n; k++) {
Expression e = MultiplicationExplicite::Builder(currentMatrix.matrixChild(i, k).clone(), resultMatrix.matrixChild(k, j).clone());
a.addChildAtIndexInPlace(e, a.numberOfChildren(), a.numberOfChildren());
e.shallowReduce(reductionContext);
}
newResult.addChildAtIndexInPlace(a, newResult.numberOfChildren(), newResult.numberOfChildren());
a.shallowReduce(reductionContext);
}
}
newResult.setDimensions(newResultN, newResultM);
n = newResultN;
m = newResultM;
removeChildInPlace(currentMatrix, currentMatrix.numberOfChildren());
replaceChildInPlace(resultMatrix, newResult);
resultMatrix = newResult;
multiplicationChildIndex--;
}
/* Distribute the remaining multiplication children on the matrix children,
* if there are no oether matrices (such as a non reduced confidence
* interval). */
if (multiplicationChildIndex >= 0) {
if (SortedIsMatrix(childAtIndex(multiplicationChildIndex), reductionContext.context())) {
return *this;
}
removeChildInPlace(resultMatrix, resultMatrix.numberOfChildren());
for (int i = 0; i < n*m; i++) {
MultiplicationExplicite m = clone().convert<MultiplicationExplicite>();
Expression entryI = resultMatrix.childAtIndex(i);
resultMatrix.replaceChildInPlace(entryI, m);
m.addChildAtIndexInPlace(entryI, m.numberOfChildren(), m.numberOfChildren());
m.shallowReduce(reductionContext);
}
}
replaceWithInPlace(resultMatrix);
return resultMatrix.shallowReduce(reductionContext);
}
/* Step 4: Gather like terms. For example, turn pi^2*pi^3 into pi^5. Thanks to
* the simplification order, such terms are guaranteed to be next to each
* other. */
int i = 0;
while (i < numberOfChildren()-1) {
Expression oi = childAtIndex(i);
Expression oi1 = childAtIndex(i+1);
if (oi.recursivelyMatches(Expression::IsRandom, reductionContext.context(), true)) {
// Do not factorize random or randint
i++;
continue;
}
if (TermsHaveIdenticalBase(oi, oi1)) {
bool shouldFactorizeBase = true;
if (TermHasNumeralBase(oi)) {
/* Combining powers of a given rational isn't straightforward. Indeed,
* there are two cases we want to deal with:
* - 2*2^(1/2) or 2*2^pi, we want to keep as-is
* - 2^(1/2)*2^(3/2) we want to combine. */
shouldFactorizeBase = oi.type() == ExpressionNode::Type::Power && oi1.type() == ExpressionNode::Type::Power;
}
if (shouldFactorizeBase) {
factorizeBase(i, i+1, reductionContext);
continue;
}
} else if (TermHasNumeralBase(oi) && TermHasNumeralBase(oi1) && TermsHaveIdenticalExponent(oi, oi1)) {
factorizeExponent(i, i+1, reductionContext);
continue;
}
i++;
}
/* Step 5: We look for terms of form sin(x)^p*cos(x)^q with p, q rational of
* opposite signs. We replace them by either:
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
if (reductionContext.target() == ExpressionNode::ReductionTarget::User) {
for (int i = 0; i < numberOfChildren(); i++) {
Expression o1 = childAtIndex(i);
if (Base(o1).type() == ExpressionNode::Type::Sine && TermHasNumeralExponent(o1)) {
const Expression x = Base(o1).childAtIndex(0);
/* Thanks to the SimplificationOrder, Cosine-base factors are after
* Sine-base factors */
for (int j = i+1; j < numberOfChildren(); j++) {
Expression o2 = childAtIndex(j);
if (Base(o2).type() == ExpressionNode::Type::Cosine && TermHasNumeralExponent(o2) && Base(o2).childAtIndex(0).isIdenticalTo(x)) {
factorizeSineAndCosine(i, j, reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
break;
}
}
}
}
/* Replacing sin/cos by tan factors may have mixed factors and factors are
* guaranteed to be sorted (according ot SimplificationOrder) at the end of
* shallowReduce */
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, reductionContext.context(), true);
}
/* Step 6: We remove rational children that appeared in the middle of sorted
* children. It's important to do this after having factorized because
* factorization can lead to new ones. Indeed:
* pi^(-1)*pi-> 1
* i*i -> -1
* 2^(1/2)*2^(1/2) -> 2
* sin(x)*cos(x) -> 1*tan(x)
* Last, we remove the only rational child if it is one and not the only
* child. */
i = 1;
while (i < numberOfChildren()) {
Expression o = childAtIndex(i);
if (o.type() == ExpressionNode::Type::Rational && static_cast<Rational &>(o).isOne()) {
removeChildAtIndexInPlace(i);
continue;
}
if (o.isNumber()) {
if (childAtIndex(0).isNumber()) {
Number o0 = childAtIndex(0).convert<Rational>();
Number m = Number::Multiplication(o0, static_cast<Number &>(o));
replaceChildAtIndexInPlace(0, m);
removeChildAtIndexInPlace(i);
} else {
// Number child has to be first
removeChildAtIndexInPlace(i);
addChildAtIndexInPlace(o, 0, numberOfChildren());
}
continue;
}
i++;
}
/* Step 7: If the first child is zero, the multiplication result is zero. We
* do this after merging the rational children, because the merge takes care
* of turning 0*inf into undef. We still have to check that no other child
* involves an inifity expression to avoid reducing 0*e^(inf) to 0.
* If the first child is 1, we remove it if there are other children. */
{
const Expression c = childAtIndex(0);
if (c.type() == ExpressionNode::Type::Rational && static_cast<const Rational &>(c).isZero()) {
// Check that other children don't match inf
bool infiniteFactor = false;
for (int i = 1; i < numberOfChildren(); i++) {
infiniteFactor = childAtIndex(i).recursivelyMatches(Expression::IsInfinity, reductionContext.context());
if (infiniteFactor) {
break;
}
}
if (!infiniteFactor) {
replaceWithInPlace(c);
return c;
}
}
if (c.type() == ExpressionNode::Type::Rational && static_cast<const Rational &>(c).isOne() && numberOfChildren() > 1) {
removeChildAtIndexInPlace(0);
}
}
/* Step 8: Expand multiplication over addition children if any. For example,
* turn (a+b)*c into a*c + b*c. We do not want to do this step right now if
* the parent is a multiplication or if the reduction is done bottom up to
* avoid missing factorization such as (x+y)^(-1)*((a+b)*(x+y)).
* Note: This step must be done after Step 4, otherwise we wouldn't be able to
* reduce expressions such as (x+y)^(-1)*(x+y)(a+b).
* If there is a random somewhere, do not expand. */
Expression p = parent();
bool hasRandom = recursivelyMatches(Expression::IsRandom, reductionContext.context(), true);
if (shouldExpand
&& (p.isUninitialized() || p.type() != ExpressionNode::Type::MultiplicationExplicite)
&& !hasRandom)
{
for (int i = 0; i < numberOfChildren(); i++) {
if (childAtIndex(i).type() == ExpressionNode::Type::Addition) {
return distributeOnOperandAtIndex(i, reductionContext);
}
}
}
// Step 9: Let's remove the multiplication altogether if it has one child
Expression result = squashUnaryHierarchyInPlace();
if (result != *this) {
return result;
}
/* Step 10: Let's bubble up the complex operator if possible
* 3 cases:
* - All children are real, we do nothing (allChildrenAreReal == 1)
* - One of the child is non-real and not a ComplexCartesian: it means a
* complex expression could not be resolved as a ComplexCartesian, we cannot
* do anything about it now (allChildrenAreReal == -1)
* - All children are either real or ComplexCartesian (allChildrenAreReal == 0)
* We can bubble up ComplexCartesian nodes.
* Do not simplify if there are randoms !*/
if (!hasRandom && allChildrenAreReal(reductionContext.context()) == 0) {
int nbChildren = numberOfChildren();
int i = nbChildren-1;
// Children are sorted so ComplexCartesian nodes are at the end
assert(childAtIndex(i).type() == ExpressionNode::Type::ComplexCartesian);
// First, we merge all ComplexCartesian children into one
ComplexCartesian child = childAtIndex(i).convert<ComplexCartesian>();
removeChildAtIndexInPlace(i);
i--;
while (i >= 0) {
Expression e = childAtIndex(i);
if (e.type() != ExpressionNode::Type::ComplexCartesian) {
// the Multiplication is sorted so ComplexCartesian nodes are the last ones
break;
}
child = child.multiply(static_cast<ComplexCartesian &>(e), reductionContext);
removeChildAtIndexInPlace(i);
i--;
}
// The real children are both factors of the real and the imaginary multiplication
MultiplicationExplicite real = *this;
MultiplicationExplicite imag = clone().convert<MultiplicationExplicite>();
real.addChildAtIndexInPlace(child.real(), real.numberOfChildren(), real.numberOfChildren());
imag.addChildAtIndexInPlace(child.imag(), real.numberOfChildren(), real.numberOfChildren());
ComplexCartesian newComplexCartesian = ComplexCartesian::Builder();
replaceWithInPlace(newComplexCartesian);
newComplexCartesian.replaceChildAtIndexInPlace(0, real);
newComplexCartesian.replaceChildAtIndexInPlace(1, imag);
real.shallowReduce(reductionContext);
imag.shallowReduce(reductionContext);
return newComplexCartesian.shallowReduce();
}
return result;
}
void MultiplicationExplicite::mergeMultiplicationChildrenInPlace() {
// Multiplication is associative: a*(b*c)->a*b*c
int i = 0;
while (i < numberOfChildren()) {
Expression c = childAtIndex(i);
if (c.type() == ExpressionNode::Type::MultiplicationExplicite) {
mergeChildrenAtIndexInPlace(c, i); // TODO: ensure that matrix children are not swapped to implement MATRIX_EXACT_REDUCING
continue;
}
i++;
}
}
void MultiplicationExplicite::factorizeBase(int i, int j, ExpressionNode::ReductionContext reductionContext) {
/* This function factorizes two children which have a common base. For example
* if this is MultiplicationExplicite::Builder(pi^2, pi^3), then pi^2 and pi^3 could be merged
* and this turned into MultiplicationExplicite::Builder(pi^5). */
Expression e = childAtIndex(j);
// Step 1: Get rid of the child j
removeChildAtIndexInPlace(j);
// Step 2: Merge child j in child i by factorizing base
mergeInChildByFactorizingBase(i, e, reductionContext);
}
void MultiplicationExplicite::mergeInChildByFactorizingBase(int i, Expression e, ExpressionNode::ReductionContext reductionContext) {
/* This function replace the child at index i by its factorization with e. e
* and childAtIndex(i) are supposed to have a common base. */
// Step 1: Find the new exponent
Expression s = Addition::Builder(CreateExponent(childAtIndex(i)), CreateExponent(e)); // pi^2*pi^3 -> pi^(2+3) -> pi^5
// Step 2: Create the new Power
Expression p = Power::Builder(Base(childAtIndex(i)), s); // pi^2*pi^-2 -> pi^0 -> 1
s.shallowReduce(reductionContext);
// Step 3: Replace one of the child
replaceChildAtIndexInPlace(i, p);
p = p.shallowReduce(reductionContext);
/* Step 4: Reducing the new power might have turned it into a multiplication,
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
* node with this. */
if (p.type() == ExpressionNode::Type::MultiplicationExplicite) {
mergeMultiplicationChildrenInPlace();
}
}
void MultiplicationExplicite::factorizeExponent(int i, int j, ExpressionNode::ReductionContext reductionContext) {
/* This function factorizes children which share a common exponent. For
* example, it turns MultiplicationExplicite::Builder(2^x,3^x) into MultiplicationExplicite::Builder(6^x). */
// Step 1: Find the new base
Expression m = MultiplicationExplicite::Builder(Base(childAtIndex(i)), Base(childAtIndex(j))); // 2^x*3^x -> (2*3)^x -> 6^x
// Step 2: Get rid of one of the children
removeChildAtIndexInPlace(j);
// Step 3: Replace the other child
childAtIndex(i).replaceChildAtIndexInPlace(0, m);
// Step 4: Reduce expressions
m.shallowReduce(reductionContext);
Expression p = childAtIndex(i).shallowReduce(reductionContext); // 2^x*(1/2)^x -> (2*1/2)^x -> 1
/* Step 5: Reducing the new power might have turned it into a multiplication,
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
* node with this. */
if (p.type() == ExpressionNode::Type::MultiplicationExplicite) {
mergeMultiplicationChildrenInPlace();
}
}
Expression MultiplicationExplicite::distributeOnOperandAtIndex(int i, ExpressionNode::ReductionContext reductionContext) {
/* This method creates a*...*b*y... + a*...*c*y... + ... from
* a*...*(b+c+...)*y... */
assert(i >= 0 && i < numberOfChildren());
assert(childAtIndex(i).type() == ExpressionNode::Type::Addition);
Addition a = Addition::Builder();
Expression childI = childAtIndex(i);
int numberOfAdditionTerms = childI.numberOfChildren();
for (int j = 0; j < numberOfAdditionTerms; j++) {
MultiplicationExplicite m = clone().convert<MultiplicationExplicite>();
m.replaceChildAtIndexInPlace(i, childI.childAtIndex(j));
// Reduce m: pi^(-1)*(pi + x) -> pi^(-1)*pi + pi^(-1)*x -> 1 + pi^(-1)*x
a.addChildAtIndexInPlace(m, a.numberOfChildren(), a.numberOfChildren());
m.shallowReduce(reductionContext);
}
replaceWithInPlace(a);
return a.shallowReduce(reductionContext); // Order terms, put under a common denominator if needed
}
void MultiplicationExplicite::addMissingFactors(Expression factor, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
if (factor.type() == ExpressionNode::Type::MultiplicationExplicite) {
for (int j = 0; j < factor.numberOfChildren(); j++) {
addMissingFactors(factor.childAtIndex(j), context, complexFormat, angleUnit);
}
return;
}
/* Special case when factor is a Rational: if 'this' has already a rational
* child, we replace it by its LCM with factor ; otherwise, we simply add
* factor as a child. */
if (numberOfChildren() > 0 && childAtIndex(0).type() == ExpressionNode::Type::Rational && factor.type() == ExpressionNode::Type::Rational) {
assert(static_cast<Rational &>(factor).integerDenominator().isOne());
assert(childAtIndex(0).convert<Rational>().integerDenominator().isOne());
Integer lcm = Arithmetic::LCM(static_cast<Rational &>(factor).unsignedIntegerNumerator(), childAtIndex(0).convert<Rational>().unsignedIntegerNumerator());
if (lcm.isOverflow()) {
addChildAtIndexInPlace(Rational::Builder(static_cast<Rational &>(factor).unsignedIntegerNumerator()), 1, numberOfChildren());
return;
}
replaceChildAtIndexInPlace(0, Rational::Builder(lcm));
return;
}
if (factor.type() != ExpressionNode::Type::Rational) {
/* If factor is not a rational, we merge it with the child of identical
* base if any. Otherwise, we add it as an new child. */
ExpressionNode::ReductionContext reductionContext = ExpressionNode::ReductionContext(context, complexFormat, angleUnit, ExpressionNode::ReductionTarget::User);
for (int i = 0; i < numberOfChildren(); i++) {
if (TermsHaveIdenticalBase(childAtIndex(i), factor)) {
Expression sub = Subtraction::Builder(CreateExponent(childAtIndex(i)), CreateExponent(factor)).deepReduce(reductionContext);
if (sub.sign(reductionContext.context()) == ExpressionNode::Sign::Negative) { // index[0] < index[1]
sub = Opposite::Builder(sub);
if (factor.type() == ExpressionNode::Type::Power) {
factor.replaceChildAtIndexInPlace(1, sub);
} else {
factor = Power::Builder(factor, sub);
}
sub.shallowReduce(reductionContext);
mergeInChildByFactorizingBase(i, factor, reductionContext);
} else if (sub.sign(reductionContext.context()) == ExpressionNode::Sign::Unknown) {
mergeInChildByFactorizingBase(i, factor, reductionContext);
}
return;
}
}
}
addChildAtIndexInPlace(factor.clone(), 0, numberOfChildren());
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
}
void MultiplicationExplicite::factorizeSineAndCosine(int i, int j, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
/* This function turn sin(x)^p * cos(x)^q into either:
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
const Expression x = Base(childAtIndex(i)).childAtIndex(0);
// We check before that p and q were numbers
Number p = CreateExponent(childAtIndex(i)).convert<Number>();
Number q = CreateExponent(childAtIndex(j)).convert<Number>();
// If p and q have the same sign, we cannot replace them by a tangent
if ((int)p.sign()*(int)q.sign() > 0) {
return;
}
Number sumPQ = Number::Addition(p, q);
Number absP = p.clone().convert<Number>().setSign(ExpressionNode::Sign::Positive);
Number absQ = q.clone().convert<Number>().setSign(ExpressionNode::Sign::Positive);
Expression tan = Tangent::Builder(x.clone());
ExpressionNode::ReductionContext userReductionContext = ExpressionNode::ReductionContext(context, complexFormat, angleUnit, ExpressionNode::ReductionTarget::User);
if (Number::NaturalOrder(absP, absQ) < 0) {
// Replace sin(x) by tan(x) or sin(x)^p by tan(x)^p
if (p.isRationalOne()) {
replaceChildAtIndexInPlace(i, tan);
} else {
replaceChildAtIndexInPlace(i, Power::Builder(tan, p));
}
childAtIndex(i).shallowReduce(userReductionContext);
// Replace cos(x)^q by cos(x)^(p+q)
replaceChildAtIndexInPlace(j, Power::Builder(Base(childAtIndex(j)), sumPQ));
childAtIndex(j).shallowReduce(userReductionContext);
} else {
// Replace cos(x)^q by tan(x)^(-q)
Expression newPower = Power::Builder(tan, Number::Multiplication(q, Rational::Builder(-1)));
newPower.childAtIndex(1).shallowReduce(userReductionContext);
replaceChildAtIndexInPlace(j, newPower);
newPower.shallowReduce(userReductionContext);
// Replace sin(x)^p by sin(x)^(p+q)
replaceChildAtIndexInPlace(i, Power::Builder(Base(childAtIndex(i)), sumPQ));
childAtIndex(i).shallowReduce(userReductionContext);
}
}
bool MultiplicationExplicite::HaveSameNonNumeralFactors(const Expression & e1, const Expression & e2) {
assert(e1.numberOfChildren() > 0);
assert(e2.numberOfChildren() > 0);
int numberOfNonNumeralFactors1 = e1.childAtIndex(0).isNumber() ? e1.numberOfChildren()-1 : e1.numberOfChildren();
int numberOfNonNumeralFactors2 = e2.childAtIndex(0).isNumber() ? e2.numberOfChildren()-1 : e2.numberOfChildren();
if (numberOfNonNumeralFactors1 != numberOfNonNumeralFactors2) {
return false;
}
int firstNonNumeralOperand1 = e1.childAtIndex(0).isNumber() ? 1 : 0;
int firstNonNumeralOperand2 = e2.childAtIndex(0).isNumber() ? 1 : 0;
for (int i = 0; i < numberOfNonNumeralFactors1; i++) {
Expression currentChild1 = e1.childAtIndex(firstNonNumeralOperand1+i);
if (currentChild1.isRandom()
|| !(currentChild1.isIdenticalTo(e2.childAtIndex(firstNonNumeralOperand2+i))))
{
return false;
}
}
return true;
}
const Expression MultiplicationExplicite::CreateExponent(Expression e) {
Expression result = e.type() == ExpressionNode::Type::Power ? e.childAtIndex(1).clone() : Rational::Builder(1);
return result;
}
bool MultiplicationExplicite::TermsHaveIdenticalBase(const Expression & e1, const Expression & e2) {
return Base(e1).isIdenticalTo(Base(e2));
}
bool MultiplicationExplicite::TermsHaveIdenticalExponent(const Expression & e1, const Expression & e2) {
/* Note: We will return false for e1=2 and e2=Pi, even though one could argue
* that these have the same exponent whose value is 1. */
return e1.type() == ExpressionNode::Type::Power && e2.type() == ExpressionNode::Type::Power && (e1.childAtIndex(1).isIdenticalTo(e2.childAtIndex(1)));
}
bool MultiplicationExplicite::TermHasNumeralBase(const Expression & e) {
return Base(e).isNumber();
}
bool MultiplicationExplicite::TermHasNumeralExponent(const Expression & e) {
if (e.type() != ExpressionNode::Type::Power) {
return true;
}
if (e.childAtIndex(1).isNumber()) {
return true;
}
return false;
}
Expression MultiplicationExplicite::mergeNegativePower(Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
/* mergeNegativePower groups all factors that are power of form a^(-b) together
* for instance, a^(-1)*b^(-c)*c = c*(a*b^c)^(-1) */
MultiplicationExplicite m = MultiplicationExplicite::Builder();
// Special case for rational p/q: if q != 1, q should be at denominator
if (childAtIndex(0).type() == ExpressionNode::Type::Rational && !childAtIndex(0).convert<Rational>().integerDenominator().isOne()) {
Rational r = childAtIndex(0).convert<Rational>();
m.addChildAtIndexInPlace(Rational::Builder(r.integerDenominator()), 0, m.numberOfChildren());
if (r.signedIntegerNumerator().isOne()) {
removeChildAtIndexInPlace(0);
} else {
replaceChildAtIndexInPlace(0, Rational::Builder(r.signedIntegerNumerator()));
}
}
int i = 0;
// Look for power of form a^(-b)
while (i < numberOfChildren()) {
if (childAtIndex(i).type() == ExpressionNode::Type::Power) {
Expression p = childAtIndex(i);
Expression positivePIndex = p.childAtIndex(1).makePositiveAnyNegativeNumeralFactor( ExpressionNode::ReductionContext(context, complexFormat, angleUnit, ExpressionNode::ReductionTarget::User));
if (!positivePIndex.isUninitialized()) {
// Remove a^(-b) from the Multiplication
removeChildAtIndexInPlace(i);
// Add a^b to m
m.addChildAtIndexInPlace(p, m.numberOfChildren(), m.numberOfChildren());
if (p.childAtIndex(1).isRationalOne()) {
p.replaceWithInPlace(p.childAtIndex(0));
}
// We do not increment i because we removed one child from the Multiplication
continue;
}
}
i++;
}
if (m.numberOfChildren() == 0) {
return *this;
}
m.sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
Power p = Power::Builder(m.squashUnaryHierarchyInPlace(), Rational::Builder(-1));
addChildAtIndexInPlace(p, 0, numberOfChildren());
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
return squashUnaryHierarchyInPlace();
}
const Expression MultiplicationExplicite::Base(const Expression e) {
if (e.type() == ExpressionNode::Type::Power) {
return e.childAtIndex(0);
}
return e;
}
}

View File

@@ -0,0 +1,53 @@
#include <poincare/multiplication_implicite.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/layout_helper.h>
#include <poincare/serialization_helper.h>
#include <poincare/rational.h>
#include <cmath>
#include <ion.h>
#include <assert.h>
namespace Poincare {
Layout MultiplicationImpliciteNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
return LayoutHelper::Infix(MultiplicationImplicite(this), floatDisplayMode, numberOfSignificantDigits, "");
}
int MultiplicationImpliciteNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
return SerializationHelper::Infix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, "");
}
Expression MultiplicationImpliciteNode::shallowReduce(ReductionContext reductionContext) {
return MultiplicationImplicite(this).shallowReduce(reductionContext);
}
bool MultiplicationImpliciteNode::childNeedsParenthesis(const TreeNode * child) const {
if (MultiplicationNode::childNeedsParenthesis(child)) {
return true;
}
if (static_cast<const ExpressionNode *>(child)->type() == Type::Rational && !static_cast<const RationalNode *>(child)->denominator().isOne()) {
return true;
}
Type types[] = {Type::Power, Type::Opposite, Type::MultiplicationExplicite, Type::Division, Type::Factorial};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 5);
}
/* Multiplication */
Expression MultiplicationImplicite::shallowReduce(ExpressionNode::ReductionContext reductionContext) {
{
Expression e = Expression::defaultShallowReduce();
if (e.isUndefined()) {
return e;
}
}
assert(numberOfChildren() == 2);
MultiplicationExplicite m = MultiplicationExplicite::Builder();
for (int i = 0; i < numberOfChildren(); i++) {
m.addChildAtIndexInPlace(childAtIndex(i), i, i);
}
replaceWithInPlace(m);
return m.shallowReduce(reductionContext);
}
}

View File

@@ -4,7 +4,7 @@
#include <poincare/constant.h>
#include <poincare/horizontal_layout.h>
#include <poincare/layout_helper.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
@@ -79,7 +79,7 @@ Expression Opposite::shallowReduce(ExpressionNode::ReductionContext reductionCon
return result;
}
Expression child = result.childAtIndex(0);
result = Multiplication::Builder(Rational::Builder(-1), child);
result = MultiplicationExplicite::Builder(Rational::Builder(-1), child);
replaceWithInPlace(result);
return result.shallowReduce(reductionContext);
}

View File

@@ -191,7 +191,7 @@ void Parser::parseMinus(Expression & leftHandSide, Token::Type stoppingType) {
void Parser::parseTimes(Expression & leftHandSide, Token::Type stoppingType) {
Expression rightHandSide;
if (parseBinaryOperator(leftHandSide, rightHandSide, Token::Times)) {
leftHandSide = Multiplication::Builder(leftHandSide, rightHandSide);
leftHandSide = MultiplicationExplicite::Builder(leftHandSide, rightHandSide);
}
}
@@ -205,7 +205,7 @@ void Parser::parseSlash(Expression & leftHandSide, Token::Type stoppingType) {
void Parser::parseImplicitTimes(Expression & leftHandSide, Token::Type stoppingType) {
Expression rightHandSide;
if (parseBinaryOperator(leftHandSide, rightHandSide, Token::Slash)) {
leftHandSide = Multiplication::Builder(leftHandSide, rightHandSide);
leftHandSide = MultiplicationImplicite::Builder(leftHandSide, rightHandSide);
}
}

View File

@@ -157,8 +157,8 @@ bool PowerNode::childNeedsParenthesis(const TreeNode * child) const {
if (static_cast<const ExpressionNode *>(child)->type() == Type::Rational && !static_cast<const RationalNode *>(child)->denominator().isOne()) {
return true;
}
Type types[] = {Type::Power, Type::Subtraction, Type::Opposite, Type::Multiplication, Type::Division, Type::Addition};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 6);
Type types[] = {Type::Power, Type::Subtraction, Type::Opposite, Type::MultiplicationExplicite, Type::MultiplicationImplicite, Type::Division, Type::Addition};
return static_cast<const ExpressionNode *>(child)->isOfType(types, 7);
}
int PowerNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
@@ -333,7 +333,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
Expression result = matrixBase.clone();
// TODO: implement a quick exponentiation
for (int k = 1; k < exp; k++) {
result = Multiplication::Builder(result, matrixBase.clone());
result = MultiplicationExplicite::Builder(result, matrixBase.clone());
result = result.shallowReduce(reductionContext);
}
assert(!result.isUninitialized());
@@ -503,7 +503,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
if (base.sign(reductionContext.context()) == ExpressionNode::Sign::Negative) {
// (-inf)^x --> (-1)^x*inf
Power p = Power::Builder(Rational::Builder(-1), childAtIndex(1));
result = Multiplication::Builder(p, result);
result = MultiplicationExplicite::Builder(p, result);
p.shallowReduce(reductionContext);
}
}
@@ -541,7 +541,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
replaceChildAtIndexInPlace(0, m0);
/* m0 doesn't need to be shallowReduce as
* makePositiveAnyNegativeNumeralFactor returns a reduced expression */
Multiplication m1 = Multiplication::Builder();
MultiplicationExplicite m1 = MultiplicationExplicite::Builder();
replaceWithInPlace(m1);
// Multiply m1 by i complex
Constant i = Constant::Builder(UCodePointMathematicalBoldSmallI);
@@ -555,14 +555,14 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
// Step 8: e^(r*i*Pi) with r rational --> cos(pi*r) + i*sin(pi*r)
if (!letPowerAtRoot && isNthRootOfUnity()) {
Expression i = index.childAtIndex(index.numberOfChildren()-2);
static_cast<Multiplication &>(index).removeChildAtIndexInPlace(index.numberOfChildren()-2);
static_cast<MultiplicationExplicite &>(index).removeChildAtIndexInPlace(index.numberOfChildren()-2);
if (reductionContext.angleUnit() == Preferences::AngleUnit::Degree) {
index.replaceChildAtIndexInPlace(index.numberOfChildren()-1, Rational::Builder(180));
}
Expression cos = Cosine::Builder(index);
index = index.shallowReduce(reductionContext);
Expression sin = Sine::Builder(index.clone());
Expression complexPart = Multiplication::Builder(sin, i);
Expression complexPart = MultiplicationExplicite::Builder(sin, i);
sin.shallowReduce(reductionContext);
Expression a = Addition::Builder(cos, complexPart);
cos.shallowReduce(reductionContext);
@@ -631,8 +631,8 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
}
}
// Step 11: (a*b*c*...)^r ?
if (!letPowerAtRoot && baseType == ExpressionNode::Type::Multiplication) {
Multiplication multiplicationBase = static_cast<Multiplication &>(base);
if (!letPowerAtRoot && baseType == ExpressionNode::Type::MultiplicationExplicite) {
MultiplicationExplicite multiplicationBase = static_cast<MultiplicationExplicite &>(base);
// Case 1: (a*b*c*...)^n = a^n*b^n*c^n*... if n integer
if (indexType == ExpressionNode::Type::Rational && static_cast<Rational &>(index).integerDenominator().isOne()) {
return simplifyPowerMultiplication(reductionContext);
@@ -662,7 +662,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
// |a|^r*(sign(a)*b*...)^r
Power thisRef = *this;
Multiplication root = Multiplication::Builder(p);
MultiplicationExplicite root = MultiplicationExplicite::Builder(p);
replaceWithInPlace(root);
root.addChildAtIndexInPlace(thisRef, 1, 1);
p.shallowReduce(reductionContext);
@@ -706,7 +706,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
additionIndex.removeChildAtIndexInPlace(0); // p2 = a^(c+...)
// if addition had only 2 children
additionIndex.squashUnaryHierarchyInPlace();
Multiplication m = Multiplication::Builder(p1);
MultiplicationExplicite m = MultiplicationExplicite::Builder(p1);
replaceWithInPlace(m);
m.addChildAtIndexInPlace(thisRef, 1, 1);
p1.simplifyRationalRationalPower(reductionContext);
@@ -750,7 +750,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
// We need a 'double' distribution and newA will hold the new expanded form
Expression newA = Addition::Builder();
for (int j = 0; j < a.numberOfChildren(); j++) {
Expression m = Multiplication::Builder(result.clone(), a.childAtIndex(j).clone()).distributeOnOperandAtIndex(0, reductionContext);
Expression m = MultiplicationExplicite::Builder(result.clone(), a.childAtIndex(j).clone()).distributeOnOperandAtIndex(0, reductionContext);
if (newA.type() == ExpressionNode::Type::Addition) {
static_cast<Addition &>(newA).addChildAtIndexInPlace(m, newA.numberOfChildren(), newA.numberOfChildren());
} else {
@@ -762,7 +762,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
result = newA;
} else {
// Just distribute result on a
Multiplication m = Multiplication::Builder(a.clone(), result.clone());
MultiplicationExplicite m = MultiplicationExplicite::Builder(a.clone(), result.clone());
Expression distributedM = m.distributeOnOperandAtIndex(0, reductionContext);
result.replaceWithInPlace(distributedM);
result = distributedM;
@@ -797,7 +797,7 @@ Expression Power::shallowReduce(ExpressionNode::ReductionContext reductionContex
Power * p0 = new Power::Builder(x0->clone(), new Rational::Builder(i), false);
Power * p1 = new Power::Builder(x1->clone(), new Rational::Builder(clippedN-i), false);
const Expression * operands[3] = {r, p0, p1};
Multiplication * m = new Multiplication::Builder(operands, 3, false);
MultiplicationExplicite * m = new MultiplicationExplicite::Builder(operands, 3, false);
p0->shallowReduce(reductionContext);
p1->shallowReduce(reductionContext);
a->addOperand(m);
@@ -855,7 +855,7 @@ Expression Power::shallowBeautify(ExpressionNode::ReductionContext reductionCont
// Step 4: +(a,b)^c ->(+(a,b))^c and *(a,b)^c ->(*(a,b))^c
if (childAtIndex(0).type() == ExpressionNode::Type::Addition
|| childAtIndex(0).type() == ExpressionNode::Type::Multiplication)
|| childAtIndex(0).isMultiplication())
{
Parenthesis p = Parenthesis::Builder(childAtIndex(0));
replaceChildAtIndexInPlace(0, p);
@@ -885,7 +885,7 @@ Expression Power::denominator(Context * context, Preferences::ComplexFormat comp
Expression Power::simplifyPowerPower(ExpressionNode::ReductionContext reductionContext) {
// this is p^e = (a^b)^e, we want a^(b*e)
Expression p = childAtIndex(0);
Multiplication m = Multiplication::Builder(p.childAtIndex(1), childAtIndex(1));
MultiplicationExplicite m = MultiplicationExplicite::Builder(p.childAtIndex(1), childAtIndex(1));
replaceChildAtIndexInPlace(0, p.childAtIndex(0));
replaceChildAtIndexInPlace(1, m);
m.shallowReduce(reductionContext);
@@ -927,7 +927,7 @@ Expression Power::simplifyRationalRationalPower(ExpressionNode::ReductionContext
n = CreateSimplifiedIntegerRationalPower(a.signedIntegerNumerator(), b, false, reductionContext);
d = CreateSimplifiedIntegerRationalPower(a.integerDenominator(), b, true, reductionContext);
}
Multiplication m = Multiplication::Builder(n, d);
MultiplicationExplicite m = MultiplicationExplicite::Builder(n, d);
replaceWithInPlace(m);
return m.shallowReduce(reductionContext);
}
@@ -970,7 +970,7 @@ Expression Power::CreateSimplifiedIntegerRationalPower(Integer i, Rational r, bo
}
Integer one(1);
Rational r3 = isDenominator ? Rational::Builder(one, r1) : Rational::Builder(r1);
Multiplication m = Multiplication::Builder();
MultiplicationExplicite m = MultiplicationExplicite::Builder();
m.addChildAtIndexInPlace(r3, 0, 0);
if (!r2.isOne()) {
m.addChildAtIndexInPlace(p, 1, 1);
@@ -1023,9 +1023,9 @@ Expression Power::removeSquareRootsFromDenominator(ExpressionNode::ReductionCont
Power sqrt = Power::Builder(Rational::Builder(pq), Rational::Builder(1, 2));
Integer one(1);
if (castedChild1.isHalf()) {
result = Multiplication::Builder(Rational::Builder(one, q), sqrt);
result = MultiplicationExplicite::Builder(Rational::Builder(one, q), sqrt);
} else {
result = Multiplication::Builder(Rational::Builder(one, p), sqrt); // We use here the assertion that p != 0
result = MultiplicationExplicite::Builder(Rational::Builder(one, p), sqrt); // We use here the assertion that p != 0
}
sqrt.shallowReduce(reductionContext);
}
@@ -1080,11 +1080,11 @@ Expression Power::removeSquareRootsFromDenominator(ExpressionNode::ReductionCont
Integer factor1 = Integer::Multiplication(
Integer::Multiplication(n1, d1),
Integer::Multiplication(Integer::Power(d2, Integer(2)), q2));
Multiplication m1 = Multiplication::Builder(Rational::Builder(factor1), sqrt1);
Multiplication m1 = MultiplicationExplicite::Builder(Rational::Builder(factor1), sqrt1);
Integer factor2 = Integer::Multiplication(
Integer::Multiplication(n2, d2),
Integer::Multiplication(Integer::Power(d1, Integer(2)), q1));
Multiplication m2 = Multiplication::Builder(Rational::Builder(factor2), sqrt2);
Multiplication m2 = MultiplicationExplicite::Builder(Rational::Builder(factor2), sqrt2);
Expression numerator;
if (denominator.isNegative()) {
numerator = Subtraction::Builder(m2, m1);
@@ -1097,7 +1097,7 @@ Expression Power::removeSquareRootsFromDenominator(ExpressionNode::ReductionCont
}
numerator = numerator.deepReduce(reductionContext);
Integer one(1);
result = Multiplication::Builder(numerator, Rational::Builder(one, denominator));
result = MultiplicationExplicite::Builder(numerator, Rational::Builder(one, denominator));
}
if (!result.isUninitialized()) {
@@ -1140,7 +1140,7 @@ bool Power::isNthRootOfUnity() const {
if (childAtIndex(0).type() != ExpressionNode::Type::Constant || !childAtIndex(0).convert<Constant>().isExponential()) {
return false;
}
if (childAtIndex(1).type() != ExpressionNode::Type::Multiplication) {
if (childAtIndex(1).type() != ExpressionNode::Type::MultiplicationExplicite) {
return false;
}
if (childAtIndex(1).numberOfChildren() < 2 || childAtIndex(1).numberOfChildren() > 3) {
@@ -1183,7 +1183,7 @@ Expression Power::CreateComplexExponent(const Expression & r, ExpressionNode::Re
const Constant exp = Constant::Builder(UCodePointScriptSmallE);
Constant iComplex = Constant::Builder(UCodePointMathematicalBoldSmallI);
const Constant pi = Constant::Builder(UCodePointGreekSmallLetterPi);
Multiplication mExp = Multiplication::Builder(iComplex, pi, r.clone());
MultiplicationExplicite mExp = MultiplicationExplicite::Builder(iComplex, pi, r.clone());
iComplex.shallowReduce(reductionContext);
Power p = Power::Builder(exp, mExp);
mExp.shallowReduce(reductionContext);
@@ -1191,10 +1191,10 @@ Expression Power::CreateComplexExponent(const Expression & r, ExpressionNode::Re
#if 0
const Constant iComplex = Constant::Builder(UCodePointMathematicalBoldSmallI);
const Constant pi = Constant::Builder(UCodePointGreekSmallLetterPi);
Expression op = Multiplication::Builder(pi, r).shallowReduce(context, complexFormat, angleUnit, false);
Expression op = MultiplicationExplicite::Builder(pi, r).shallowReduce(context, complexFormat, angleUnit, false);
Cosine cos = Cosine(op).shallowReduce(context, complexFormat, angleUnit, false);;
Sine sin = Sine(op).shallowReduce(context, complexFormat, angleUnit, false);
Expression m = Multiplication::Builder(iComplex, sin);
Expression m = MultiplicationExplicite::Builder(iComplex, sin);
Expression a = Addition::Builder(cos, m);
const Expression * multExpOperands[3] = {pi, r->clone()};
#endif
@@ -1211,7 +1211,7 @@ bool Power::TermIsARationalSquareRootOrRational(const Expression & e) {
{
return true;
}
if (e.type() == ExpressionNode::Type::Multiplication
if (e.type() == ExpressionNode::Type::MultiplicationExplicite
&& e.numberOfChildren() == 2
&& e.childAtIndex(0).type() == ExpressionNode::Type::Rational
&& e.childAtIndex(1).type() == ExpressionNode::Type::Power
@@ -1232,7 +1232,7 @@ const Rational Power::RadicandInExpression(const Expression & e) {
assert(e.childAtIndex(0).type() == ExpressionNode::Type::Rational);
return e.childAtIndex(0).convert<Rational>();
} else {
assert(e.type() == ExpressionNode::Type::Multiplication);
assert(e.type() == ExpressionNode::Type::MultiplicationExplicite);
assert(e.childAtIndex(1).type() == ExpressionNode::Type::Power);
assert(e.childAtIndex(1).childAtIndex(0).type() == ExpressionNode::Type::Rational);
return e.childAtIndex(1).childAtIndex(0).convert<Rational>();
@@ -1245,7 +1245,7 @@ const Rational Power::RationalFactorInExpression(const Expression & e) {
} else if (e.type() == ExpressionNode::Type::Power) {
return Rational::Builder(1);
} else {
assert(e.type() == ExpressionNode::Type::Multiplication);
assert(e.type() == ExpressionNode::Type::MultiplicationExplicite);
assert(e.childAtIndex(0).type() == ExpressionNode::Type::Rational);
return e.childAtIndex(0).convert<Rational>();
}

View File

@@ -1,7 +1,7 @@
#include <poincare/prediction_interval.h>
#include <poincare/matrix.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/power.h>
#include <poincare/undefined.h>
#include <poincare/division.h>
@@ -89,9 +89,9 @@ Expression PredictionInterval::shallowReduce(ExpressionNode::ReductionContext re
}
// Compute sqr = sqrt(r0*(1-r0)/r1)
Expression sqr = Power::Builder(Division::Builder(numerator, r1), Rational::Builder(1, 2));
Expression m = Multiplication::Builder(Rational::Builder(196, 100), sqr);
Expression m = MultiplicationExplicite::Builder(Rational::Builder(196, 100), sqr);
Matrix matrix = Matrix::Builder();
matrix.addChildAtIndexInPlace(Addition::Builder(r0.clone(), Multiplication::Builder(Rational::Builder(-1), m.clone())), 0, 0);
matrix.addChildAtIndexInPlace(Addition::Builder(r0.clone(), MultiplicationExplicite::Builder(Rational::Builder(-1), m.clone())), 0, 0);
matrix.addChildAtIndexInPlace(Addition::Builder(r0.clone(), m), 1, 1);
matrix.setDimensions(1, 2);
replaceWithInPlace(matrix);

View File

@@ -84,7 +84,7 @@ Expression SignFunction::shallowReduce(ExpressionNode::ReductionContext reductio
return *this;
}
Expression sign = *this;
Multiplication m = Multiplication::Builder(Rational::Builder(-1));
Multiplication m = MultiplicationExplicite::Builder(Rational::Builder(-1));
replaceWithInPlace(m);
m.addChildAtIndexInPlace(sign, 1, 1); // sign does not need to be shallowReduced because -x = NAN --> x = NAN
return m; // m does not need to be shallowReduced, -1*sign cannot be reduced

View File

@@ -2,7 +2,7 @@
#include <poincare/layout_helper.h>
#include <poincare/serialization_helper.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/opposite.h>
#include <poincare/rational.h>
#include <assert.h>
@@ -61,7 +61,7 @@ Expression Subtraction::shallowReduce(ExpressionNode::ReductionContext reduction
if (e.isUndefined()) {
return e;
}
Expression m = Multiplication::Builder(Rational::Builder(-1), childAtIndex(1));
Expression m = MultiplicationExplicite::Builder(Rational::Builder(-1), childAtIndex(1));
Addition a = Addition::Builder(childAtIndex(0), m);
m = m.shallowReduce(reductionContext);
replaceWithInPlace(a);

View File

@@ -314,7 +314,8 @@ template MatrixIdentity TreeHandle::FixedArityBuilder<MatrixIdentity, MatrixIden
template MatrixInverse TreeHandle::FixedArityBuilder<MatrixInverse, MatrixInverseNode>(TreeHandle*, size_t);
template MatrixTrace TreeHandle::FixedArityBuilder<MatrixTrace, MatrixTraceNode>(TreeHandle*, size_t);
template MatrixTranspose TreeHandle::FixedArityBuilder<MatrixTranspose, MatrixTransposeNode>(TreeHandle*, size_t);
template Multiplication TreeHandle::NAryBuilder<Multiplication, MultiplicationNode>(TreeHandle*, size_t);
template MultiplicationExplicite TreeHandle::NAryBuilder<MultiplicationExplicite, MultiplicationExpliciteNode>(TreeHandle*, size_t);
template MultiplicationImplicite TreeHandle::NAryBuilder<MultiplicationImplicite, MultiplicationImpliciteNode>(TreeHandle*, size_t);
template NaperianLogarithm TreeHandle::FixedArityBuilder<NaperianLogarithm, NaperianLogarithmNode>(TreeHandle*, size_t);
template NthRoot TreeHandle::FixedArityBuilder<NthRoot, NthRootNode>(TreeHandle*, size_t);
template Opposite TreeHandle::FixedArityBuilder<Opposite, OppositeNode>(TreeHandle*, size_t);

View File

@@ -4,7 +4,7 @@
#include <poincare/decimal.h>
#include <poincare/derivative.h>
#include <poincare/float.h>
#include <poincare/multiplication.h>
#include <poincare/multiplication_explicite.h>
#include <poincare/power.h>
#include <poincare/preferences.h>
#include <poincare/rational.h>
@@ -82,7 +82,7 @@ bool Trigonometry::AreInverseFunctions(const Expression & directFunction, const
bool Trigonometry::ExpressionIsEquivalentToTangent(const Expression & e) {
// We look for (cos^-1 * sin)
assert(ExpressionNode::Type::Power < ExpressionNode::Type::Sine);
if (e.type() == ExpressionNode::Type::Multiplication
if (e.type() == ExpressionNode::Type::MultiplicationExplicite
&& e.childAtIndex(1).type() == ExpressionNode::Type::Sine
&& e.childAtIndex(0).type() == ExpressionNode::Type::Power
&& e.childAtIndex(0).childAtIndex(0).type() == ExpressionNode::Type::Cosine
@@ -125,7 +125,7 @@ Expression Trigonometry::shallowReduceDirectFunction(Expression & e, ExpressionN
Power::Builder(
Addition::Builder(
Rational::Builder(1),
Multiplication::Builder(
MultiplicationExplicite::Builder(
Rational::Builder(-1),
Power::Builder(e.childAtIndex(0).childAtIndex(0), Rational::Builder(2))
)
@@ -166,7 +166,7 @@ Expression Trigonometry::shallowReduceDirectFunction(Expression & e, ExpressionN
// reduce 1+*x^2
res.childAtIndex(0).shallowReduce(reductionContext);
if (e.type() == ExpressionNode::Type::Sine) {
res = Multiplication::Builder(x, res);
res = MultiplicationExplicite::Builder(x, res);
// reduce (1+x^2)^(-1/2)
res.childAtIndex(0).shallowReduce(reductionContext);
}
@@ -184,7 +184,7 @@ Expression Trigonometry::shallowReduceDirectFunction(Expression & e, ExpressionN
return e.shallowReduce(reductionContext);
} else {
// sin(-a) = -sin(a) or tan(-a) = -tan(a)
Multiplication m = Multiplication::Builder(Rational::Builder(-1));
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(-1));
e.replaceWithInPlace(m);
m.addChildAtIndexInPlace(e, 1, 1);
e.shallowReduce(reductionContext);
@@ -197,7 +197,7 @@ Expression Trigonometry::shallowReduceDirectFunction(Expression & e, ExpressionN
* multiply the cos/sin/tan by -1 if needed.
* We know thanks to Step 3 that p/q > 0. */
if ((reductionContext.angleUnit() == Preferences::AngleUnit::Radian
&& e.childAtIndex(0).type() == ExpressionNode::Type::Multiplication
&& e.childAtIndex(0).type() == ExpressionNode::Type::MultiplicationExplicite
&& e.childAtIndex(0).numberOfChildren() == 2
&& e.childAtIndex(0).childAtIndex(1).type() == ExpressionNode::Type::Constant
&& e.childAtIndex(0).childAtIndex(1).convert<Constant>().isPi()
@@ -250,7 +250,7 @@ Expression Trigonometry::shallowReduceDirectFunction(Expression & e, ExpressionN
unaryCoefficient *= -1;
}
Expression simplifiedCosine = e.shallowReduce(reductionContext); // recursive
Multiplication m = Multiplication::Builder(Rational::Builder(unaryCoefficient));
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(unaryCoefficient));
simplifiedCosine.replaceWithInPlace(m);
m.addChildAtIndexInPlace(simplifiedCosine, 1, 1);
return m.shallowReduce(reductionContext);
@@ -303,12 +303,12 @@ Expression Trigonometry::shallowReduceInverseFunction(Expression & e, Expressio
* reduced to undef) */
if (reductionContext.target() == ExpressionNode::ReductionTarget::User || x.isNumber()) {
Expression sign = SignFunction::Builder(x.clone());
Multiplication m0 = Multiplication::Builder(Rational::Builder(1,2), sign, Constant::Builder(UCodePointGreekSmallLetterPi));
MultiplicationExplicite m0 = MultiplicationExplicite::Builder(Rational::Builder(1,2), sign, Constant::Builder(UCodePointGreekSmallLetterPi));
sign.shallowReduce(reductionContext);
e.replaceChildAtIndexInPlace(0, x);
Addition a = Addition::Builder(m0);
e.replaceWithInPlace(a);
Multiplication m1 = Multiplication::Builder(Rational::Builder(-1), e);
MultiplicationExplicite m1 = MultiplicationExplicite::Builder(Rational::Builder(-1), e);
e.shallowReduce(reductionContext);
a.addChildAtIndexInPlace(m1, 1, 1);
return a.shallowReduce(reductionContext);
@@ -348,7 +348,7 @@ Expression Trigonometry::shallowReduceInverseFunction(Expression & e, Expressio
return s.shallowReduce(reductionContext);
} else {
// asin(-x) = -asin(x) or atan(-x) = -atan(x)
Multiplication m = Multiplication::Builder(Rational::Builder(-1));
MultiplicationExplicite m = MultiplicationExplicite::Builder(Rational::Builder(-1));
e.replaceWithInPlace(m);
m.addChildAtIndexInPlace(e, 1, 1);
e.shallowReduce(reductionContext);

View File

@@ -41,11 +41,11 @@ Expression TrigonometryCheatTable::simplify(const Expression e, ExpressionNode::
&& e.type() != ExpressionNode::Type::Rational)
|| (inputType == Type::AngleInRadians
&& e.type() != ExpressionNode::Type::Rational
&& e.type() != ExpressionNode::Type::Multiplication
&& e.type() != ExpressionNode::Type::MultiplicationExplicite
&& e.type() != ExpressionNode::Type::Constant)
|| (inputType > Type::AngleInRadians
&& e.type() != ExpressionNode::Type::Rational
&& e.type() != ExpressionNode::Type::Multiplication
&& e.type() != ExpressionNode::Type::MultiplicationExplicite
&& e.type() != ExpressionNode::Type::Power
&& e.type() != ExpressionNode::Type::Addition))
{

View File

@@ -9,8 +9,8 @@ using namespace Poincare;
void assert_multiplication_or_addition_is_ordered_as(Expression e1, Expression e2) {
Shared::GlobalContext globalContext;
if (e1.type() == ExpressionNode::Type::Multiplication) {
static_cast<Multiplication&>(e1).sortChildrenInPlace(
if (e1.type() == ExpressionNode::Type::MultiplicationExplicite) {
static_cast<MultiplicationExplicite&>(e1).sortChildrenInPlace(
[](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); },
&globalContext,
true);
@@ -27,13 +27,13 @@ void assert_multiplication_or_addition_is_ordered_as(Expression e1, Expression e
QUIZ_CASE(poincare_expression_order) {
{
// 2 * 5 -> 2 * 5
Expression e1 = Multiplication::Builder(Rational::Builder(2), Rational::Builder(5));
Expression e1 = MultiplicationExplicite::Builder(Rational::Builder(2), Rational::Builder(5));
assert_multiplication_or_addition_is_ordered_as(e1, e1);
}
{
// 5 * 2 -> 2 * 5
Expression e1 = Multiplication::Builder(Rational::Builder(5), Rational::Builder(2));
Expression e2 = Multiplication::Builder(Rational::Builder(2), Rational::Builder(5));
Expression e1 = MultiplicationExplicite::Builder(Rational::Builder(5), Rational::Builder(2));
Expression e2 = MultiplicationExplicite::Builder(Rational::Builder(2), Rational::Builder(5));
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}
{
@@ -59,8 +59,8 @@ QUIZ_CASE(poincare_expression_order) {
}
{
// root(3) $ 2 -> 2 * root(3)
Expression e1 = Multiplication::Builder(SquareRoot::Builder(Rational::Builder(3)), Rational::Builder(2));
Expression e2 = Multiplication::Builder(Rational::Builder(2), SquareRoot::Builder(Rational::Builder(3)));
Expression e1 = MultiplicationExplicite::Builder(SquareRoot::Builder(Rational::Builder(3)), Rational::Builder(2));
Expression e2 = MultiplicationExplicite::Builder(Rational::Builder(2), SquareRoot::Builder(Rational::Builder(3)));
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}
{
@@ -84,16 +84,16 @@ QUIZ_CASE(poincare_expression_order) {
}
{
// 3*x^2 + 2*x^3 -> 2*x^3 + 3*x^2
Expression child1 = Multiplication::Builder(Rational::Builder(2), Power::Builder(Symbol::Builder('x'), Rational::Builder(3)));
Expression child2 = Multiplication::Builder(Rational::Builder(3), Power::Builder(Symbol::Builder('x'), Rational::Builder(2)));
Expression child1 = MultiplicationExplicite::Builder(Rational::Builder(2), Power::Builder(Symbol::Builder('x'), Rational::Builder(3)));
Expression child2 = MultiplicationExplicite::Builder(Rational::Builder(3), Power::Builder(Symbol::Builder('x'), Rational::Builder(2)));
Expression e1 = Addition::Builder(child2.clone(), child1.clone());
Expression e2 = Addition::Builder(child1, child2);
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}
{
// 2*x + 3*x -> 3*x + 2*x
Expression child1 = Multiplication::Builder(Rational::Builder(3), Symbol::Builder('x'));
Expression child2 = Multiplication::Builder(Rational::Builder(2), Symbol::Builder('x'));
Expression child1 = MultiplicationExplicite::Builder(Rational::Builder(3), Symbol::Builder('x'));
Expression child2 = MultiplicationExplicite::Builder(Rational::Builder(2), Symbol::Builder('x'));
Expression e1 = Addition::Builder(child2.clone(), child1.clone());
Expression e2 = Addition::Builder(child1, child2);
assert_multiplication_or_addition_is_ordered_as(e1, e2);
@@ -102,16 +102,16 @@ QUIZ_CASE(poincare_expression_order) {
// pi^b * pi^a -> pi^a * pi^b
Expression child1 = Power::Builder(Constant::Builder(UCodePointGreekSmallLetterPi), Symbol::Builder('a'));
Expression child2 = Power::Builder(Constant::Builder(UCodePointGreekSmallLetterPi), Symbol::Builder('b'));
Expression e1 = Multiplication::Builder(child2.clone(), child1.clone());
Expression e2 = Multiplication::Builder(child1, child2);
Expression e1 = MultiplicationExplicite::Builder(child2.clone(), child1.clone());
Expression e2 = MultiplicationExplicite::Builder(child1, child2);
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}
{
// pi^3 * pi^2 -> pi^2 * pi^3
Expression child1 = Power::Builder(Constant::Builder(UCodePointGreekSmallLetterPi), Rational::Builder(2));
Expression child2 = Power::Builder(Constant::Builder(UCodePointGreekSmallLetterPi), Rational::Builder(3));
Expression e1 = Multiplication::Builder(child2.clone(), child1.clone());
Expression e2 = Multiplication::Builder(child1, child2);
Expression e1 = MultiplicationExplicite::Builder(child2.clone(), child1.clone());
Expression e2 = MultiplicationExplicite::Builder(child1, child2);
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}
{
@@ -120,8 +120,8 @@ QUIZ_CASE(poincare_expression_order) {
Expression child2 = Rational::Builder(2);
Expression childMatrix = Matrix::Builder();
static_cast<Matrix &>(childMatrix).addChildAtIndexInPlace(Rational::Builder(3), 0, 0);
Expression e1 = Multiplication::Builder(child2.clone(), childMatrix.clone(), child1.clone());
Expression e2 = Multiplication::Builder(child1.clone(), child2.clone(), childMatrix.clone());
Expression e1 = MultiplicationExplicite::Builder(child2.clone(), childMatrix.clone(), child1.clone());
Expression e2 = MultiplicationExplicite::Builder(child1.clone(), child2.clone(), childMatrix.clone());
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}
@@ -147,8 +147,8 @@ QUIZ_CASE(poincare_expression_order) {
childMatrix1.clone(),
childMatrix2.clone()
};
Expression e1 = Multiplication::Builder(children, numberOfChildren);
Expression e2 = Multiplication::Builder(childrenSorted, numberOfChildren);
Expression e1 = MultiplicationExplicite::Builder(children, numberOfChildren);
Expression e2 = MultiplicationExplicite::Builder(childrenSorted, numberOfChildren);
assert_multiplication_or_addition_is_ordered_as(e1, e2);
}

View File

@@ -234,7 +234,7 @@ QUIZ_CASE(poincare_parse_layouts) {
CodePointLayout::Builder('+'),
CodePointLayout::Builder('5'))),
CodePointLayout::Builder('3'));
e = Multiplication::Builder(
e = MultiplicationExplicite::Builder(
Rational::Builder(5),
Division::Builder(
Rational::Builder(6),
@@ -296,8 +296,8 @@ QUIZ_CASE(poincare_parse_layouts) {
VerticalOffsetLayout::Builder(
CodePointLayout::Builder('3'),
VerticalOffsetLayoutNode::Position::Superscript));
e = Multiplication::Builder(Rational::Builder(2),Power::Builder(Constant::Builder(UCodePointScriptSmallE),Parenthesis::Builder(Rational::Builder(3))));
assert_parsed_expression_is("2^(3)", Multiplication::Builder(Rational::Builder(2),Power::Builder(Constant::Builder(UCodePointScriptSmallE),Parenthesis::Builder(Rational::Builder(3)))));
e = MultiplicationExplicite::Builder(Rational::Builder(2),Power::Builder(Constant::Builder(UCodePointScriptSmallE),Parenthesis::Builder(Rational::Builder(3))));
assert_parsed_expression_is("2^(3)", MultiplicationExplicite::Builder(Rational::Builder(2),Power::Builder(Constant::Builder(UCodePointScriptSmallE),Parenthesis::Builder(Rational::Builder(3)))));
assert_parsed_layout_is(l, e);
}

View File

@@ -122,16 +122,16 @@ QUIZ_CASE(poincare_parser_parse) {
assert_parsed_expression_is("(1+2)", Parenthesis::Builder(Addition::Builder(Rational::Builder(1),Rational::Builder(2))));
assert_parsed_expression_is("1+2+3", Addition::Builder(Addition::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("1+2+(3+4)", Addition::Builder(Addition::Builder(Rational::Builder(1),Rational::Builder(2)),Parenthesis::Builder(Addition::Builder(Rational::Builder(3),Rational::Builder(4)))));
assert_parsed_expression_is("1×2", Multiplication::Builder(Rational::Builder(1),Rational::Builder(2)));
assert_parsed_expression_is("1×2×3", Multiplication::Builder(Multiplication::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("1+2×3", Addition::Builder(Rational::Builder(1), Multiplication::Builder(Rational::Builder(2), Rational::Builder(3))));
assert_parsed_expression_is("1×2", MultiplicationExplicite::Builder(Rational::Builder(1),Rational::Builder(2)));
assert_parsed_expression_is("1×2×3", MultiplicationExplicite::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("1+2×3", Addition::Builder(Rational::Builder(1), MultiplicationExplicite::Builder(Rational::Builder(2), Rational::Builder(3))));
assert_parsed_expression_is("1/2", Division::Builder(Rational::Builder(1),Rational::Builder(2)));
assert_parsed_expression_is("(1/2)", Parenthesis::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2))));
assert_parsed_expression_is("1/2/3", Division::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("1/2×3", Multiplication::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("(1/2×3)", Parenthesis::Builder(Multiplication::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3))));
assert_parsed_expression_is("1×2/3", Multiplication::Builder(Rational::Builder(1),Division::Builder(Rational::Builder(2),Rational::Builder(3))));
assert_parsed_expression_is("(1×2/3)", Parenthesis::Builder(Multiplication::Builder(Rational::Builder(1),Division::Builder(Rational::Builder(2),Rational::Builder(3)))));
assert_parsed_expression_is("1/2×3", MultiplicationExplicite::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("(1/2×3)", Parenthesis::Builder(MultiplicationExplicite::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3))));
assert_parsed_expression_is("1×2/3", MultiplicationExplicite::Builder(Rational::Builder(1),Division::Builder(Rational::Builder(2),Rational::Builder(3))));
assert_parsed_expression_is("(1×2/3)", Parenthesis::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Division::Builder(Rational::Builder(2),Rational::Builder(3)))));
assert_parsed_expression_is("(1/2/3)", Parenthesis::Builder(Division::Builder(Division::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3))));
assert_parsed_expression_is("1^2", Power::Builder(Rational::Builder(1),Rational::Builder(2)));
assert_parsed_expression_is("1^2^3", Power::Builder(Rational::Builder(1),Power::Builder(Rational::Builder(2),Rational::Builder(3))));
@@ -147,23 +147,23 @@ QUIZ_CASE(poincare_parser_parse) {
assert_parsed_expression_is("1+-2", Addition::Builder(Rational::Builder(1),Opposite::Builder(Rational::Builder(2))));
assert_parsed_expression_is("--1", Opposite::Builder((Expression)Opposite::Builder(Rational::Builder(1))));
assert_parsed_expression_is("(1+2)-3", Subtraction::Builder(Parenthesis::Builder(Addition::Builder(Rational::Builder(1),Rational::Builder(2))),Rational::Builder(3)));
assert_parsed_expression_is("(2×-3)", Parenthesis::Builder(Multiplication::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(3)))));
assert_parsed_expression_is("(2×-3)", Parenthesis::Builder(MultiplicationExplicite::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(3)))));
assert_parsed_expression_is("1^(2)-3", Subtraction::Builder(Power::Builder(Rational::Builder(1),Parenthesis::Builder(Rational::Builder(2))),Rational::Builder(3)));
assert_parsed_expression_is("1^2-3", Subtraction::Builder(Power::Builder(Rational::Builder(1),Rational::Builder(2)),Rational::Builder(3)));
assert_parsed_expression_is("2^-3", Power::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(3))));
assert_parsed_expression_is("2--2+-1", Addition::Builder(Subtraction::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(2))),Opposite::Builder(Rational::Builder(1))));
assert_parsed_expression_is("2--2×-1", Subtraction::Builder(Rational::Builder(2),Opposite::Builder(Multiplication::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(1))))));
assert_parsed_expression_is("2--2×-1", Subtraction::Builder(Rational::Builder(2),Opposite::Builder(MultiplicationExplicite::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(1))))));
assert_parsed_expression_is("-1^2", Opposite::Builder(Power::Builder(Rational::Builder(1),Rational::Builder(2))));
assert_parsed_expression_is("2/-3/-4", Division::Builder(Division::Builder(Rational::Builder(2),Opposite::Builder(Rational::Builder(3))),Opposite::Builder(Rational::Builder(4))));
assert_parsed_expression_is("1×2-3×4", Subtraction::Builder(Multiplication::Builder(Rational::Builder(1),Rational::Builder(2)),Multiplication::Builder(Rational::Builder(3),Rational::Builder(4))));
assert_parsed_expression_is("-1×2", Opposite::Builder(Multiplication::Builder(Rational::Builder(1), Rational::Builder(2))));
assert_parsed_expression_is("1×2-3×4", Subtraction::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Rational::Builder(2)),MultiplicationExplicite::Builder(Rational::Builder(3),Rational::Builder(4))));
assert_parsed_expression_is("-1×2", Opposite::Builder(MultiplicationExplicite::Builder(Rational::Builder(1), Rational::Builder(2))));
assert_parsed_expression_is("1!", Factorial::Builder(Rational::Builder(1)));
assert_parsed_expression_is("1+2!", Addition::Builder(Rational::Builder(1),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1!+2", Addition::Builder(Factorial::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1!+2!", Addition::Builder(Factorial::Builder(Rational::Builder(1)),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1×2!", Multiplication::Builder(Rational::Builder(1),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1!×2", Multiplication::Builder(Factorial::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1!×2!", Multiplication::Builder(Factorial::Builder(Rational::Builder(1)),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1×2!", MultiplicationExplicite::Builder(Rational::Builder(1),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1!×2", MultiplicationExplicite::Builder(Factorial::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1!×2!", MultiplicationExplicite::Builder(Factorial::Builder(Rational::Builder(1)),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1-2!", Subtraction::Builder(Rational::Builder(1),Factorial::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1!-2", Subtraction::Builder(Factorial::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1!-2!", Subtraction::Builder(Factorial::Builder(Rational::Builder(1)),Factorial::Builder(Rational::Builder(2))));
@@ -361,27 +361,27 @@ QUIZ_CASE(poincare_parser_parse_store) {
QUIZ_CASE(poincare_parser_implicit_multiplication) {
assert_raises_parsing_error(".1.2");
assert_raises_parsing_error("1 2");
assert_parsed_expression_is("1x", Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1)));
assert_parsed_expression_is("1ans", Multiplication::Builder(Rational::Builder(1),Symbol::Builder("ans", 3)));
assert_parsed_expression_is("1x", MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1)));
assert_parsed_expression_is("1ans", MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("ans", 3)));
assert_parsed_expression_is("x1", Symbol::Builder("x1", 2));
assert_parsed_expression_is("1x+2", Addition::Builder(Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1)),Rational::Builder(2)));
assert_parsed_expression_is("", Multiplication::Builder(Rational::Builder(1),Constant::Builder(UCodePointGreekSmallLetterPi)));
assert_parsed_expression_is("1x-2", Subtraction::Builder(Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1)),Rational::Builder(2)));
assert_parsed_expression_is("-1x", Opposite::Builder(Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1))));
assert_parsed_expression_is("2×1x", Multiplication::Builder(Rational::Builder(2),Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1))));
assert_parsed_expression_is("2^1x", Multiplication::Builder(Power::Builder(Rational::Builder(2),Rational::Builder(1)),Symbol::Builder("x", 1)));
assert_parsed_expression_is("1x^2", Multiplication::Builder(Rational::Builder(1),Power::Builder(Symbol::Builder("x", 1),Rational::Builder(2))));
assert_parsed_expression_is("2/1x", Division::Builder(Rational::Builder(2),Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1))));
assert_parsed_expression_is("1x/2", Division::Builder(Multiplication::Builder(Rational::Builder(1),Symbol::Builder("x", 1)),Rational::Builder(2)));
assert_parsed_expression_is("(1)2", Multiplication::Builder(Parenthesis::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1(2)", Multiplication::Builder(Rational::Builder(1),Parenthesis::Builder(Rational::Builder(2))));
assert_parsed_expression_is("sin(1)2", Multiplication::Builder(Sine::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1cos(2)", Multiplication::Builder(Rational::Builder(1),Cosine::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1!2", Multiplication::Builder(Factorial::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("2^(3)", Multiplication::Builder(Rational::Builder(2),Power::Builder(Constant::Builder(UCodePointScriptSmallE),Parenthesis::Builder(Rational::Builder(3)))));
assert_parsed_expression_is("1x+2", Addition::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1)),Rational::Builder(2)));
assert_parsed_expression_is("", MultiplicationExplicite::Builder(Rational::Builder(1),Constant::Builder(UCodePointGreekSmallLetterPi)));
assert_parsed_expression_is("1x-2", Subtraction::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1)),Rational::Builder(2)));
assert_parsed_expression_is("-1x", Opposite::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1))));
assert_parsed_expression_is("2×1x", MultiplicationExplicite::Builder(Rational::Builder(2),MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1))));
assert_parsed_expression_is("2^1x", MultiplicationExplicite::Builder(Power::Builder(Rational::Builder(2),Rational::Builder(1)),Symbol::Builder("x", 1)));
assert_parsed_expression_is("1x^2", MultiplicationExplicite::Builder(Rational::Builder(1),Power::Builder(Symbol::Builder("x", 1),Rational::Builder(2))));
assert_parsed_expression_is("2/1x", Division::Builder(Rational::Builder(2),MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1))));
assert_parsed_expression_is("1x/2", Division::Builder(MultiplicationExplicite::Builder(Rational::Builder(1),Symbol::Builder("x", 1)),Rational::Builder(2)));
assert_parsed_expression_is("(1)2", MultiplicationExplicite::Builder(Parenthesis::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1(2)", MultiplicationExplicite::Builder(Rational::Builder(1),Parenthesis::Builder(Rational::Builder(2))));
assert_parsed_expression_is("sin(1)2", MultiplicationExplicite::Builder(Sine::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("1cos(2)", MultiplicationExplicite::Builder(Rational::Builder(1),Cosine::Builder(Rational::Builder(2))));
assert_parsed_expression_is("1!2", MultiplicationExplicite::Builder(Factorial::Builder(Rational::Builder(1)),Rational::Builder(2)));
assert_parsed_expression_is("2^(3)", MultiplicationExplicite::Builder(Rational::Builder(2),Power::Builder(Constant::Builder(UCodePointScriptSmallE),Parenthesis::Builder(Rational::Builder(3)))));
Expression m1[] = {Rational::Builder(1)}; Matrix M1 = BuildMatrix(1,1,m1);
Expression m2[] = {Rational::Builder(2)}; Matrix M2 = BuildMatrix(1,1,m2);
assert_parsed_expression_is("[[1]][[2]]", Multiplication::Builder(M1,M2));
assert_parsed_expression_is("[[1]][[2]]", MultiplicationExplicite::Builder(M1,M2));
}
QUIZ_CASE(poincare_parser_expression_evaluation) {

View File

@@ -80,12 +80,12 @@ QUIZ_CASE(poincare_characteristic_range) {
assert_expression_has_characteristic_range(Cosine::Builder(Opposite::Builder(Symbol::Builder(UCodePointUnknownX))), 360.0f);
assert_expression_has_characteristic_range(Cosine::Builder(Symbol::Builder(UCodePointUnknownX)), 2.0f*M_PI, Preferences::AngleUnit::Radian);
assert_expression_has_characteristic_range(Cosine::Builder(Opposite::Builder(Symbol::Builder(UCodePointUnknownX))), 2.0f*M_PI, Preferences::AngleUnit::Radian);
assert_expression_has_characteristic_range(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknownX)),Rational::Builder(10))), 40.0f);
assert_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknownX)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknownX),Rational::Builder(2)))), 720.0f);
assert_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknownX)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknownX),Rational::Builder(2)))), 4.0f*M_PI, Preferences::AngleUnit::Radian);
assert_expression_has_characteristic_range(Sine::Builder(Addition::Builder(MultiplicationExplicite::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknownX)),Rational::Builder(10))), 40.0f);
assert_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(MultiplicationExplicite::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknownX)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknownX),Rational::Builder(2)))), 720.0f);
assert_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(MultiplicationExplicite::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknownX)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknownX),Rational::Builder(2)))), 4.0f*M_PI, Preferences::AngleUnit::Radian);
assert_expression_has_characteristic_range(Symbol::Builder(UCodePointUnknownX), NAN);
assert_expression_has_characteristic_range(Addition::Builder(Cosine::Builder(Rational::Builder(3)),Rational::Builder(2)), 0.0f);
assert_expression_has_characteristic_range(CommonLogarithm::Builder(Cosine::Builder(Multiplication::Builder(Rational::Builder(40),Symbol::Builder(UCodePointUnknownX)))), 9.0f);
assert_expression_has_characteristic_range(CommonLogarithm::Builder(Cosine::Builder(MultiplicationExplicite::Builder(Rational::Builder(40),Symbol::Builder(UCodePointUnknownX)))), 9.0f);
assert_expression_has_characteristic_range(Cosine::Builder((Expression)Cosine::Builder(Symbol::Builder(UCodePointUnknownX))), 360.0f);
assert_simplify("cos(x)→f(x)");
assert_expression_has_characteristic_range(Function::Builder("f",1,Symbol::Builder(UCodePointUnknownX)), 360.0f);