mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 16:57:31 +01:00
Plots are still rendered in float but computations are now in double Change-Id: I7e0a38effb780861b1443ee92a097cd319de3bc8
83 lines
2.4 KiB
C++
83 lines
2.4 KiB
C++
#include "binomial_distribution.h"
|
|
#include <poincare/binomial_distribution.h>
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
|
|
namespace Probability {
|
|
|
|
I18n::Message BinomialDistribution::parameterNameAtIndex(int index) {
|
|
assert(index >= 0 && index < 2);
|
|
if (index == 0) {
|
|
return I18n::Message::N;
|
|
} else {
|
|
return I18n::Message::P;
|
|
}
|
|
}
|
|
|
|
I18n::Message BinomialDistribution::parameterDefinitionAtIndex(int index) {
|
|
assert(index >= 0 && index < 2);
|
|
if (index == 0) {
|
|
return I18n::Message::RepetitionNumber;
|
|
} else {
|
|
return I18n::Message::SuccessProbability;
|
|
}
|
|
}
|
|
|
|
float BinomialDistribution::evaluateAtAbscissa(float x) const {
|
|
return Poincare::BinomialDistribution::EvaluateAtAbscissa<float>(x, m_parameter1, m_parameter2);
|
|
}
|
|
|
|
float BinomialDistribution::xMin() const {
|
|
float min = 0.0f;
|
|
float max = m_parameter1 > 0.0 ? m_parameter1 : 1.0f;
|
|
return min - k_displayLeftMarginRatio * (max - min);
|
|
}
|
|
|
|
float BinomialDistribution::xMax() const {
|
|
float min = 0.0f;
|
|
float max = m_parameter1;
|
|
if (max <= min) {
|
|
max = min + 1.0f;
|
|
}
|
|
return max + k_displayRightMarginRatio*(max - min);
|
|
}
|
|
|
|
float BinomialDistribution::yMax() const {
|
|
int maxAbscissa = m_parameter2 < 1.0 ? (m_parameter1+1)*m_parameter2 : m_parameter1;
|
|
float result = evaluateAtAbscissa(maxAbscissa);
|
|
if (result <= 0.0f || std::isnan(result)) {
|
|
result = 1.0f;
|
|
}
|
|
return result*(1.0f+ k_displayTopMarginRatio);
|
|
}
|
|
|
|
|
|
bool BinomialDistribution::authorizedValueAtIndex(float x, int index) const {
|
|
if (index == 0) {
|
|
// n must be a positive integer
|
|
return (x == (int)x) && x >= 0.0f;
|
|
}
|
|
// p must be between 0 and 1
|
|
return (x >= 0.0f) && (x <= 1.0f);
|
|
}
|
|
|
|
double BinomialDistribution::cumulativeDistributiveInverseForProbability(double * probability) {
|
|
return Poincare::BinomialDistribution::CumulativeDistributiveInverseForProbability<double>(*probability, m_parameter1, m_parameter2);
|
|
}
|
|
|
|
double BinomialDistribution::rightIntegralInverseForProbability(double * probability) {
|
|
if (m_parameter1 == 0.0 && (m_parameter2 == 0.0 || m_parameter2 == 1.0)) {
|
|
return NAN;
|
|
}
|
|
if (*probability <= 0.0) {
|
|
return m_parameter1;
|
|
}
|
|
return Distribution::rightIntegralInverseForProbability(probability);
|
|
}
|
|
|
|
double BinomialDistribution::evaluateAtDiscreteAbscissa(int k) const {
|
|
return Poincare::BinomialDistribution::EvaluateAtAbscissa<double>((double) k, m_parameter1, m_parameter2);
|
|
}
|
|
|
|
}
|