Files
Upsilon/apps/sequence/sequence.cpp
2017-12-20 17:41:03 +01:00

399 lines
14 KiB
C++

#include "sequence.h"
#include "sequence_store.h"
#include "cache_context.h"
#include "../../poincare/src/layout/string_layout.h"
#include "../../poincare/src/layout/baseline_relative_layout.h"
#include <string.h>
#include <cmath>
using namespace Shared;
using namespace Poincare;
namespace Sequence {
Sequence::Sequence(const char * text, KDColor color) :
Function(text, color),
m_type(Type::Explicite),
m_firstInitialConditionText(),
m_secondInitialConditionText(),
m_firstInitialConditionExpression(nullptr),
m_secondInitialConditionExpression(nullptr),
m_firstInitialConditionLayout(nullptr),
m_secondInitialConditionLayout(nullptr),
m_nameLayout(nullptr),
m_definitionName(nullptr),
m_firstInitialConditionName(nullptr),
m_secondInitialConditionName(nullptr)
{
}
Sequence::~Sequence() {
if (m_firstInitialConditionLayout != nullptr) {
delete m_firstInitialConditionLayout;
m_firstInitialConditionLayout = nullptr;
}
if (m_secondInitialConditionLayout != nullptr) {
delete m_secondInitialConditionLayout;
m_secondInitialConditionLayout = nullptr;
}
if (m_firstInitialConditionExpression != nullptr) {
delete m_firstInitialConditionExpression;
m_firstInitialConditionExpression = nullptr;
}
if (m_secondInitialConditionExpression != nullptr) {
delete m_secondInitialConditionExpression;
m_secondInitialConditionExpression = nullptr;
}
if (m_nameLayout != nullptr) {
delete m_nameLayout;
m_nameLayout = nullptr;
}
if (m_definitionName != nullptr) {
delete m_definitionName;
m_definitionName = nullptr;
}
if (m_firstInitialConditionName != nullptr) {
delete m_firstInitialConditionName;
m_firstInitialConditionName = nullptr;
}
if (m_secondInitialConditionName != nullptr) {
delete m_secondInitialConditionName;
m_secondInitialConditionName = nullptr;
}
}
Sequence& Sequence::operator=(const Sequence& other) {
/* We temporarely store other's required features to be able to access them
* after setType (which erase all contents and index buffer) even in case of
* self assignement */
const char * contentText = other.text();
const char * firstInitialText = other.m_firstInitialConditionText;
const char * secondInitialText = other.m_secondInitialConditionText;
Function::operator=(other);
setType(other.m_type);
setContent(contentText);
setFirstInitialConditionContent(firstInitialText);
setSecondInitialConditionContent(secondInitialText);
return *this;
}
uint32_t Sequence::checksum() {
char data[k_dataLengthInBytes/sizeof(char)] = {};
strlcpy(data, text(), TextField::maxBufferSize());
strlcpy(data+TextField::maxBufferSize(), firstInitialConditionText(), TextField::maxBufferSize());
strlcpy(data+2*TextField::maxBufferSize(), secondInitialConditionText(), TextField::maxBufferSize());
data[k_dataLengthInBytes-3] = (char)m_type;
data[k_dataLengthInBytes-2] = name()!= nullptr ? name()[0] : 0;
data[k_dataLengthInBytes-1] = isActive() ? 1 : 0;
return Ion::crc32((uint32_t *)data, k_dataLengthInBytes/sizeof(uint32_t));
}
const char * Sequence::firstInitialConditionText() {
return m_firstInitialConditionText;
}
const char * Sequence::secondInitialConditionText() {
return m_secondInitialConditionText;
}
Sequence::Type Sequence::type() {
return m_type;
}
void Sequence::setType(Type type) {
m_type = type;
tidy();
/* Reset all contents */
switch (m_type) {
case Type::Explicite:
setContent("");
break;
case Type::SingleRecurrence:
{
char ex[5] = "u(n)";
ex[0] = name()[0];
setContent(ex);
break;
}
case Type::DoubleRecurrence:
{
char ex[12] = "u(n+1)+u(n)";
ex[0] = name()[0];
ex[7] = name()[0];
setContent(ex);
break;
}
}
setFirstInitialConditionContent("");
setSecondInitialConditionContent("");
//sqctx->resetCache();
}
Poincare::Expression * Sequence::firstInitialConditionExpression(Context * context) const {
if (m_firstInitialConditionExpression == nullptr) {
m_firstInitialConditionExpression = Poincare::Expression::parse(m_firstInitialConditionText);
if (m_firstInitialConditionExpression) {
Expression::Simplify(&m_firstInitialConditionExpression, *context);
}
}
return m_firstInitialConditionExpression;
}
Poincare::Expression * Sequence::secondInitialConditionExpression(Context * context) const {
if (m_secondInitialConditionExpression == nullptr) {
m_secondInitialConditionExpression = Poincare::Expression::parse(m_secondInitialConditionText);
if (m_secondInitialConditionExpression) {
Expression::Simplify(&m_secondInitialConditionExpression, *context);
}
}
return m_secondInitialConditionExpression;
}
Poincare::ExpressionLayout * Sequence::firstInitialConditionLayout() {
if (m_firstInitialConditionLayout == nullptr) {
Expression * nonSimplifedExpression = Expression::parse(m_firstInitialConditionText);
if (nonSimplifedExpression) {
m_firstInitialConditionLayout = nonSimplifedExpression->createLayout(Expression::FloatDisplayMode::Decimal);
delete nonSimplifedExpression;
}
}
return m_firstInitialConditionLayout;
}
Poincare::ExpressionLayout * Sequence::secondInitialConditionLayout() {
if (m_secondInitialConditionLayout == nullptr) {
Expression * nonSimplifedExpression = Expression::parse(m_secondInitialConditionText);
if (nonSimplifedExpression) {
m_secondInitialConditionLayout = nonSimplifedExpression->createLayout(Expression::FloatDisplayMode::Decimal);
delete nonSimplifedExpression;
}
}
return m_secondInitialConditionLayout;
}
void Sequence::setContent(const char * c) {
Function::setContent(c);
//sqctx->resetCache();
}
void Sequence::setFirstInitialConditionContent(const char * c) {
strlcpy(m_firstInitialConditionText, c, sizeof(m_firstInitialConditionText));
if (m_firstInitialConditionExpression != nullptr) {
delete m_firstInitialConditionExpression;
m_firstInitialConditionExpression = nullptr;
}
if (m_firstInitialConditionLayout != nullptr) {
delete m_firstInitialConditionLayout;
m_firstInitialConditionLayout = nullptr;
}
//sqctx->resetCache();
}
void Sequence::setSecondInitialConditionContent(const char * c) {
strlcpy(m_secondInitialConditionText, c, sizeof(m_secondInitialConditionText));
if (m_secondInitialConditionExpression != nullptr) {
delete m_secondInitialConditionExpression;
m_secondInitialConditionExpression = nullptr;
}
if (m_secondInitialConditionLayout != nullptr) {
delete m_secondInitialConditionLayout;
m_secondInitialConditionLayout = nullptr;
}
//sqctx->resetCache();
}
char Sequence::symbol() const {
return 'n';
}
int Sequence::numberOfElements() {
return (int)m_type + 1;
}
Poincare::ExpressionLayout * Sequence::nameLayout() {
if (m_nameLayout == nullptr) {
m_nameLayout = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n", 1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
return m_nameLayout;
}
Poincare::ExpressionLayout * Sequence::definitionName() {
if (m_definitionName == nullptr) {
if (m_type == Type::Explicite) {
m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n ", 2, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_type == Type::SingleRecurrence) {
m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n+1 ", 4, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_type == Type::DoubleRecurrence) {
m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n+2 ", 4, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
}
return m_definitionName;
}
Poincare::ExpressionLayout * Sequence::firstInitialConditionName() {
if (m_firstInitialConditionName == nullptr) {
if (m_type == Type::SingleRecurrence) {
m_firstInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("0", 1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
if (m_type == Type::DoubleRecurrence) {
m_firstInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("0", 1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
}
return m_firstInitialConditionName;
}
Poincare::ExpressionLayout * Sequence::secondInitialConditionName() {
if (m_secondInitialConditionName == nullptr) {
if (m_type == Type::DoubleRecurrence) {
m_secondInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("1", 1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
}
}
return m_secondInitialConditionName;
}
bool Sequence::isDefined() {
switch (m_type) {
case Type::Explicite:
return strlen(text()) != 0;
case Type::SingleRecurrence:
return strlen(text()) != 0 && strlen(firstInitialConditionText()) != 0;
default:
return strlen(text()) != 0 && strlen(firstInitialConditionText()) != 0 && strlen(secondInitialConditionText()) != 0;
}
}
bool Sequence::isEmpty() {
switch (m_type) {
case Type::Explicite:
return Function::isEmpty();
case Type::SingleRecurrence:
return Function::isEmpty() && strlen(m_firstInitialConditionText) == 0;
default:
return Function::isEmpty() && strlen(m_firstInitialConditionText) == 0 && strlen(m_secondInitialConditionText) == 0;
}
}
template<typename T>
T Sequence::templatedApproximateAtAbscissa(T x, SequenceContext * sqctx) const {
T n = std::round(x);
int sequenceIndex = name() == SequenceStore::k_sequenceNames[0] ? 0 : 1;
if (sqctx->iterateUntilRank<T>(n)) {
return sqctx->valueOfSequenceAtPreviousRank<T>(sequenceIndex, 0);
}
return NAN;
}
template<typename T>
T Sequence::approximateToNextRank(int n, SequenceContext * sqctx) const {
CacheContext<T> ctx = CacheContext<T>(sqctx);
T un = sqctx->valueOfSequenceAtPreviousRank<T>(0, 0);
T unm1 = sqctx->valueOfSequenceAtPreviousRank<T>(0, 1);
T unm2 = sqctx->valueOfSequenceAtPreviousRank<T>(0, 2);
T vn = sqctx->valueOfSequenceAtPreviousRank<T>(1, 0);
T vnm1 = sqctx->valueOfSequenceAtPreviousRank<T>(1, 1);
T vnm2 = sqctx->valueOfSequenceAtPreviousRank<T>(1, 2);
Poincare::Symbol nSymbol(symbol());
Poincare::Symbol vnSymbol(Symbol::SpecialSymbols::vn);
Poincare::Symbol vn1Symbol(Symbol::SpecialSymbols::vn1);
Poincare::Symbol unSymbol(Symbol::SpecialSymbols::un);
Poincare::Symbol un1Symbol(Symbol::SpecialSymbols::un1);
switch (m_type) {
case Type::Explicite:
{
ctx.setValueForSymbol(un, &unSymbol);
ctx.setValueForSymbol(vn, &vnSymbol);
Poincare::Complex<T> e = Poincare::Complex<T>::Float(n);
ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
return expression(sqctx)->template approximateToScalar<T>(ctx);
}
case Type::SingleRecurrence:
{
if (n == 0) {
return firstInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
}
ctx.setValueForSymbol(un, &un1Symbol);
ctx.setValueForSymbol(unm1, &unSymbol);
ctx.setValueForSymbol(vn, &vn1Symbol);
ctx.setValueForSymbol(vnm1, &vnSymbol);
Poincare::Complex<T> e = Poincare::Complex<T>::Float(n-1);
ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
return expression(sqctx)->template approximateToScalar<T>(ctx);
}
default:
{
if (n == 0) {
return firstInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
}
if (n == 1) {
return secondInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
}
ctx.setValueForSymbol(unm1, &un1Symbol);
ctx.setValueForSymbol(unm2, &unSymbol);
ctx.setValueForSymbol(vnm1, &vn1Symbol);
ctx.setValueForSymbol(vnm2, &vnSymbol);
Poincare::Complex<T> e = Poincare::Complex<T>::Float(n-2);
ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
return expression(sqctx)->template approximateToScalar<T>(ctx);
}
}
}
double Sequence::sumOfTermsBetweenAbscissa(double start, double end, Context * context) {
double result = 0.0;
if (end-start > k_maxNumberOfTermsInSum || start + 1.0 == start) {
return NAN;
}
for (double i = std::round(start); i <= std::round(end); i = i + 1.0) {
/* When |start| >> 1.0, start + 1.0 = start. In that case, quit the
* infinite loop. */
if (i == i-1.0 || i == i+1.0) {
return NAN;
}
result += evaluateAtAbscissa(i, context);
}
return result;
}
void Sequence::tidy() {
Function::tidy();
if (m_firstInitialConditionLayout != nullptr) {
delete m_firstInitialConditionLayout;
m_firstInitialConditionLayout = nullptr;
}
if (m_secondInitialConditionLayout != nullptr) {
delete m_secondInitialConditionLayout;
m_secondInitialConditionLayout = nullptr;
}
if (m_firstInitialConditionExpression != nullptr) {
delete m_firstInitialConditionExpression;
m_firstInitialConditionExpression = nullptr;
}
if (m_secondInitialConditionExpression != nullptr) {
delete m_secondInitialConditionExpression;
m_secondInitialConditionExpression = nullptr;
}
if (m_nameLayout != nullptr) {
delete m_nameLayout;
m_nameLayout = nullptr;
}
if (m_definitionName != nullptr) {
delete m_definitionName;
m_definitionName = nullptr;
}
if (m_firstInitialConditionName != nullptr) {
delete m_firstInitialConditionName;
m_firstInitialConditionName = nullptr;
}
if (m_secondInitialConditionName != nullptr) {
delete m_secondInitialConditionName;
m_secondInitialConditionName = nullptr;
}
}
template double Sequence::approximateToNextRank<double>(int, SequenceContext*) const;
template float Sequence::approximateToNextRank<float>(int, SequenceContext*) const;
}