mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 08:47:28 +01:00
262 lines
11 KiB
C++
262 lines
11 KiB
C++
#include "cartesian_function.h"
|
|
#include "expression_model_store.h"
|
|
#include "poincare_helpers.h"
|
|
#include <poincare/derivative.h>
|
|
#include <poincare/matrix.h>
|
|
#include <poincare/multiplication.h>
|
|
#include <poincare/rational.h>
|
|
#include <poincare/serialization_helper.h>
|
|
#include <escher/palette.h>
|
|
#include <ion/unicode/utf8_decoder.h>
|
|
#include <float.h>
|
|
#include <cmath>
|
|
|
|
using namespace Poincare;
|
|
|
|
namespace Shared {
|
|
|
|
void CartesianFunction::DefaultName(char buffer[], size_t bufferSize) {
|
|
constexpr int k_maxNumberOfDefaultLetterNames = 4;
|
|
static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = {
|
|
'f', 'g', 'h', 'p'
|
|
};
|
|
/* First default names are f, g, h, p and then f0, f1... ie, "f[number]",
|
|
* for instance "f12", that does not exist yet in the storage. */
|
|
size_t constantNameLength = 1; // 'f', no null-terminating char
|
|
assert(bufferSize > constantNameLength+1);
|
|
// Find the next available name
|
|
int currentNumber = -k_maxNumberOfDefaultLetterNames;
|
|
int currentNumberLength = 0;
|
|
int availableBufferSize = bufferSize - constantNameLength;
|
|
while (currentNumberLength < availableBufferSize) {
|
|
// Choose letter
|
|
buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0];
|
|
// Choose number if required
|
|
if (currentNumber >= 0) {
|
|
currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize);
|
|
} else {
|
|
buffer[1] = 0;
|
|
}
|
|
if (GlobalContext::SymbolAbstractNameIsFree(buffer)) {
|
|
// Name found
|
|
break;
|
|
}
|
|
currentNumber++;
|
|
}
|
|
assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize);
|
|
}
|
|
|
|
CartesianFunction CartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) {
|
|
static int s_colorIndex = 0;
|
|
// Create the record
|
|
char nameBuffer[SymbolAbstract::k_maxNameSize];
|
|
int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor);
|
|
CartesianFunctionRecordDataBuffer data(Palette::DataColor[s_colorIndex++ % numberOfColors]);
|
|
if (baseName == nullptr) {
|
|
DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize);
|
|
baseName = nameBuffer;
|
|
}
|
|
*error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data));
|
|
|
|
// Return if error
|
|
if (*error != Ion::Storage::Record::ErrorStatus::None) {
|
|
return CartesianFunction();
|
|
}
|
|
|
|
// Return the CartesianFunction withthe new record
|
|
return CartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension));
|
|
}
|
|
|
|
int CartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) {
|
|
// Fill buffer with f(x). Keep size for derivative sign.
|
|
int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\'');
|
|
int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize);
|
|
assert(numberOfChars + derivativeSize < (int)bufferSize);
|
|
char * firstParenthesis = const_cast<char *>(UTF8Helper::CodePointSearch(buffer, '('));
|
|
if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) {
|
|
return numberOfChars;
|
|
}
|
|
memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1);
|
|
UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize);
|
|
return numberOfChars + derivativeSize;
|
|
}
|
|
|
|
Poincare::Expression CartesianFunction::expressionReduced(Poincare::Context * context) const {
|
|
Poincare::Expression result = ExpressionModelHandle::expressionReduced(context);
|
|
if (plotType() == PlotType::Parametric && (
|
|
result.type() != Poincare::ExpressionNode::Type::Matrix ||
|
|
static_cast<Poincare::Matrix&>(result).numberOfRows() != 2 ||
|
|
static_cast<Poincare::Matrix&>(result).numberOfColumns() != 1)
|
|
) {
|
|
return Poincare::Expression::Parse("[[undef][undef]]");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
CodePoint CartesianFunction::symbol() const {
|
|
switch (plotType()) {
|
|
case PlotType::Cartesian:
|
|
return 'x';
|
|
case PlotType::Polar:
|
|
return UCodePointGreekSmallLetterTheta;
|
|
default:
|
|
assert(plotType() == PlotType::Parametric);
|
|
return 't';
|
|
}
|
|
}
|
|
|
|
CartesianFunction::PlotType CartesianFunction::plotType() const {
|
|
return recordData()->plotType();
|
|
}
|
|
|
|
void CartesianFunction::setPlotType(PlotType newPlotType) {
|
|
PlotType currentPlotType = plotType();
|
|
if (newPlotType == currentPlotType) {
|
|
return;
|
|
}
|
|
/* Reset memoized layout. */
|
|
Expression e = expressionClone();
|
|
m_model.tidy();
|
|
double tMin = newPlotType == PlotType::Cartesian ? -INFINITY : 0.0;
|
|
double tMax = newPlotType == PlotType::Cartesian ? INFINITY : 360.0;
|
|
setTMin(tMin);
|
|
setTMax(tMax);
|
|
recordData()->setPlotType(newPlotType);
|
|
if (currentPlotType == PlotType::Parametric) {
|
|
// Change [x(t) y(t)] to y(t)
|
|
if (!e.isUninitialized()
|
|
&& e.type() == ExpressionNode::Type::Matrix
|
|
&& static_cast<Poincare::Matrix&>(e).numberOfRows() == 2
|
|
&& static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1)
|
|
{
|
|
Expression nextContent = e.childAtIndex(1);
|
|
/* We need to detach it, otherwise nextContent will think it has a parent
|
|
* when we retrieve it from the storage. */
|
|
nextContent.detachFromParent();
|
|
setExpressionContent(nextContent);
|
|
}
|
|
return;
|
|
} else if (newPlotType == PlotType::Parametric) {
|
|
// Change y(t) to [t y(t)]
|
|
Matrix newExpr = Matrix::Builder();
|
|
newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknownX), 0, 0);
|
|
// if y(t) was not uninitialized, insert [t 2t] to set an example
|
|
e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknownX)) : e;
|
|
newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren());
|
|
newExpr.setDimensions(2, 1);
|
|
setExpressionContent(newExpr);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
Poincare::Coordinate2D<T> CartesianFunction::privateEvaluateXYAtParameter(T t, Poincare::Context * context) const {
|
|
Coordinate2D<T> x1x2 = templatedApproximateAtParameter(t, context);
|
|
PlotType type = plotType();
|
|
if (type == PlotType::Cartesian || type == PlotType::Parametric) {
|
|
return x1x2;
|
|
}
|
|
assert(type == PlotType::Polar);
|
|
T factor = (T)1.0;
|
|
Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
|
|
if (angleUnit == Preferences::AngleUnit::Degree) {
|
|
factor = (T) (M_PI/180.0);
|
|
} else if (angleUnit == Preferences::AngleUnit::Gradian) {
|
|
factor = (T) (M_PI/200.0);
|
|
} else {
|
|
assert(angleUnit == Preferences::AngleUnit::Radian);
|
|
}
|
|
const float angle = x1x2.x1()*factor;
|
|
return Coordinate2D<T>(x1x2.x2() * std::cos(angle), x1x2.x2() * std::sin(angle));
|
|
}
|
|
|
|
bool CartesianFunction::displayDerivative() const {
|
|
return recordData()->displayDerivative();
|
|
}
|
|
|
|
void CartesianFunction::setDisplayDerivative(bool display) {
|
|
return recordData()->setDisplayDerivative(display);
|
|
}
|
|
|
|
int CartesianFunction::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) {
|
|
PlotType type = plotType();
|
|
if (type == PlotType::Cartesian) {
|
|
return Function::printValue(cursorT, cursorX, cursorY, buffer, bufferSize, precision, context);
|
|
}
|
|
if (type == PlotType::Polar) {
|
|
return PoincareHelpers::ConvertFloatToText<double>(evaluate2DAtParameter(cursorT, context).x2(), buffer, bufferSize, precision);
|
|
}
|
|
assert(type == PlotType::Parametric);
|
|
int result = 0;
|
|
result += UTF8Decoder::CodePointToChars('(', buffer+result, bufferSize-result);
|
|
result += PoincareHelpers::ConvertFloatToText<double>(cursorX, buffer+result, bufferSize-result, precision);
|
|
result += UTF8Decoder::CodePointToChars(';', buffer+result, bufferSize-result);
|
|
result += PoincareHelpers::ConvertFloatToText<double>(cursorY, buffer+result, bufferSize-result, precision);
|
|
result += UTF8Decoder::CodePointToChars(')', buffer+result, bufferSize-result);
|
|
return result;
|
|
}
|
|
|
|
double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
|
|
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
|
|
/* TODO: when we approximate derivative, we might want to simplify the
|
|
* derivative here. However, we might want to do it once for all x (to avoid
|
|
* lagging in the derivative table. */
|
|
return PoincareHelpers::ApproximateToScalar<double>(derivative, context);
|
|
}
|
|
|
|
double CartesianFunction::tMin() const {
|
|
return recordData()->tMin();
|
|
}
|
|
|
|
double CartesianFunction::tMax() const {
|
|
return recordData()->tMax();
|
|
}
|
|
|
|
void CartesianFunction::setTMin(double tMin) {
|
|
recordData()->setTMin(tMin);
|
|
}
|
|
|
|
void CartesianFunction::setTMax(double tMax) {
|
|
recordData()->setTMax(tMax);
|
|
}
|
|
|
|
void * CartesianFunction::Model::expressionAddress(const Ion::Storage::Record * record) const {
|
|
return (char *)record->value().buffer+sizeof(CartesianFunctionRecordDataBuffer);
|
|
}
|
|
|
|
size_t CartesianFunction::Model::expressionSize(const Ion::Storage::Record * record) const {
|
|
return record->value().size-sizeof(CartesianFunctionRecordDataBuffer);
|
|
}
|
|
|
|
CartesianFunction::CartesianFunctionRecordDataBuffer * CartesianFunction::recordData() const {
|
|
assert(!isNull());
|
|
Ion::Storage::Record::Data d = value();
|
|
return reinterpret_cast<CartesianFunctionRecordDataBuffer *>(const_cast<void *>(d.buffer));
|
|
}
|
|
|
|
template<typename T>
|
|
Coordinate2D<T> CartesianFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const {
|
|
if (isCircularlyDefined(context) || t < tMin() || t > tMax()) {
|
|
return Coordinate2D<T>(NAN, NAN);
|
|
}
|
|
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
|
|
char unknown[bufferSize];
|
|
Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknownX);
|
|
PlotType type = plotType();
|
|
if (type == PlotType::Cartesian || type == PlotType::Polar) {
|
|
return Coordinate2D<T>(t, PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(context), unknown, t, context));
|
|
}
|
|
assert(type == PlotType::Parametric);
|
|
Expression e = expressionReduced(context);
|
|
assert(e.type() == ExpressionNode::Type::Matrix);
|
|
assert(static_cast<Poincare::Matrix&>(e).numberOfRows() == 2);
|
|
assert(static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1);
|
|
return Coordinate2D<T>(
|
|
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context),
|
|
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context));
|
|
}
|
|
|
|
template Coordinate2D<float> CartesianFunction::templatedApproximateAtParameter<float>(float, Poincare::Context *) const;
|
|
template Coordinate2D<double> CartesianFunction::templatedApproximateAtParameter<double>(double, Poincare::Context *) const;
|
|
|
|
}
|