Files
Upsilon/apps/shared/cartesian_function.cpp

299 lines
12 KiB
C++

#include "cartesian_function.h"
#include "expression_model_store.h"
#include "poincare_helpers.h"
#include <poincare/derivative.h>
#include <poincare/matrix.h>
#include <poincare/multiplication.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
#include <escher/palette.h>
#include <ion/unicode/utf8_decoder.h>
#include <apps/i18n.h>
#include <float.h>
#include <cmath>
using namespace Poincare;
namespace Shared {
static inline double maxDouble(double x, double y) { return x > y ? x : y; }
static inline double minDouble(double x, double y) { return x < y ? x : y; }
void CartesianFunction::DefaultName(char buffer[], size_t bufferSize) {
constexpr int k_maxNumberOfDefaultLetterNames = 4;
static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = {
'f', 'g', 'h', 'p'
};
/* First default names are f, g, h, p and then f0, f1... ie, "f[number]",
* for instance "f12", that does not exist yet in the storage. */
size_t constantNameLength = 1; // 'f', no null-terminating char
assert(bufferSize > constantNameLength+1);
// Find the next available name
int currentNumber = -k_maxNumberOfDefaultLetterNames;
int currentNumberLength = 0;
int availableBufferSize = bufferSize - constantNameLength;
while (currentNumberLength < availableBufferSize) {
// Choose letter
buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0];
// Choose number if required
if (currentNumber >= 0) {
currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize);
} else {
buffer[1] = 0;
}
if (GlobalContext::SymbolAbstractNameIsFree(buffer)) {
// Name found
break;
}
currentNumber++;
}
assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize);
}
CartesianFunction CartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) {
static int s_colorIndex = 0;
// Create the record
char nameBuffer[SymbolAbstract::k_maxNameSize];
int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor);
CartesianFunctionRecordDataBuffer data(Palette::DataColor[s_colorIndex++ % numberOfColors]);
if (baseName == nullptr) {
DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize);
baseName = nameBuffer;
}
*error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data));
// Return if error
if (*error != Ion::Storage::Record::ErrorStatus::None) {
return CartesianFunction();
}
// Return the CartesianFunction withthe new record
return CartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension));
}
int CartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) {
// Fill buffer with f(x). Keep size for derivative sign.
int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\'');
int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize);
assert(numberOfChars + derivativeSize < (int)bufferSize);
char * firstParenthesis = const_cast<char *>(UTF8Helper::CodePointSearch(buffer, '('));
if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) {
return numberOfChars;
}
memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1);
UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize);
return numberOfChars + derivativeSize;
}
Poincare::Expression CartesianFunction::expressionReduced(Poincare::Context * context) const {
Poincare::Expression result = ExpressionModelHandle::expressionReduced(context);
if (plotType() == PlotType::Parametric && (
result.type() != Poincare::ExpressionNode::Type::Matrix ||
static_cast<Poincare::Matrix&>(result).numberOfRows() != 2 ||
static_cast<Poincare::Matrix&>(result).numberOfColumns() != 1)
) {
return Poincare::Expression::Parse("[[undef][undef]]");
}
return result;
}
I18n::Message CartesianFunction::parameterMessageName() const {
return ParameterMessageForPlotType(plotType());
}
CodePoint CartesianFunction::symbol() const {
switch (plotType()) {
case PlotType::Cartesian:
return 'x';
case PlotType::Polar:
return UCodePointGreekSmallLetterTheta;
default:
assert(plotType() == PlotType::Parametric);
return 't';
}
}
CartesianFunction::PlotType CartesianFunction::plotType() const {
return recordData()->plotType();
}
void CartesianFunction::setPlotType(PlotType newPlotType) {
PlotType currentPlotType = plotType();
if (newPlotType == currentPlotType) {
return;
}
/* Reset memoized layout. */
Expression e = expressionClone();
m_model.tidy();
double tMin = newPlotType == PlotType::Cartesian ? -INFINITY : 0.0;
double tMax = newPlotType == PlotType::Cartesian ? INFINITY : 2.0*M_PI;
setTMin(tMin);
setTMax(tMax);
recordData()->setPlotType(newPlotType);
if (currentPlotType == PlotType::Parametric) {
// Change [x(t) y(t)] to y(t)
if (!e.isUninitialized()
&& e.type() == ExpressionNode::Type::Matrix
&& static_cast<Poincare::Matrix&>(e).numberOfRows() == 2
&& static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1)
{
Expression nextContent = e.childAtIndex(1);
/* We need to detach it, otherwise nextContent will think it has a parent
* when we retrieve it from the storage. */
nextContent.detachFromParent();
setExpressionContent(nextContent);
}
return;
} else if (newPlotType == PlotType::Parametric) {
// Change y(t) to [t y(t)]
Matrix newExpr = Matrix::Builder();
newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknownX), 0, 0);
// if y(t) was not uninitialized, insert [t 2t] to set an example
e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknownX)) : e;
newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren());
newExpr.setDimensions(2, 1);
setExpressionContent(newExpr);
}
}
I18n::Message CartesianFunction::ParameterMessageForPlotType(PlotType plotType) {
if (plotType == PlotType::Cartesian) {
return I18n::Message::X;
}
if (plotType == PlotType::Polar) {
return I18n::Message::Theta;
}
assert(plotType == PlotType::Parametric);
return I18n::Message::T;
}
template <typename T>
Poincare::Coordinate2D<T> CartesianFunction::privateEvaluateXYAtParameter(T t, Poincare::Context * context) const {
Coordinate2D<T> x1x2 = templatedApproximateAtParameter(t, context);
PlotType type = plotType();
if (type == PlotType::Cartesian || type == PlotType::Parametric) {
return x1x2;
}
assert(type == PlotType::Polar);
T factor = (T)1.0;
Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
if (angleUnit == Preferences::AngleUnit::Degree) {
factor = (T) (M_PI/180.0);
} else if (angleUnit == Preferences::AngleUnit::Gradian) {
factor = (T) (M_PI/200.0);
} else {
assert(angleUnit == Preferences::AngleUnit::Radian);
}
const float angle = x1x2.x1()*factor;
return Coordinate2D<T>(x1x2.x2() * std::cos(angle), x1x2.x2() * std::sin(angle));
}
bool CartesianFunction::displayDerivative() const {
return recordData()->displayDerivative();
}
void CartesianFunction::setDisplayDerivative(bool display) {
return recordData()->setDisplayDerivative(display);
}
int CartesianFunction::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) {
PlotType type = plotType();
if (type == PlotType::Cartesian) {
return Function::printValue(cursorT, cursorX, cursorY, buffer, bufferSize, precision, context);
}
if (type == PlotType::Polar) {
return PoincareHelpers::ConvertFloatToText<double>(evaluate2DAtParameter(cursorT, context).x2(), buffer, bufferSize, precision);
}
assert(type == PlotType::Parametric);
int result = 0;
result += UTF8Decoder::CodePointToChars('(', buffer+result, bufferSize-result);
result += PoincareHelpers::ConvertFloatToText<double>(cursorX, buffer+result, bufferSize-result, precision);
result += UTF8Decoder::CodePointToChars(';', buffer+result, bufferSize-result);
result += PoincareHelpers::ConvertFloatToText<double>(cursorY, buffer+result, bufferSize-result, precision);
result += UTF8Decoder::CodePointToChars(')', buffer+result, bufferSize-result);
return result;
}
double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
/* TODO: when we approximate derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(derivative, context);
}
float CartesianFunction::tMin() const {
return recordData()->tMin();
}
float CartesianFunction::tMax() const {
return recordData()->tMax();
}
void CartesianFunction::setTMin(float tMin) {
recordData()->setTMin(tMin);
}
void CartesianFunction::setTMax(float tMax) {
recordData()->setTMax(tMax);
}
void * CartesianFunction::Model::expressionAddress(const Ion::Storage::Record * record) const {
return (char *)record->value().buffer+sizeof(CartesianFunctionRecordDataBuffer);
}
size_t CartesianFunction::Model::expressionSize(const Ion::Storage::Record * record) const {
return record->value().size-sizeof(CartesianFunctionRecordDataBuffer);
}
CartesianFunction::CartesianFunctionRecordDataBuffer * CartesianFunction::recordData() const {
assert(!isNull());
Ion::Storage::Record::Data d = value();
return reinterpret_cast<CartesianFunctionRecordDataBuffer *>(const_cast<void *>(d.buffer));
}
template<typename T>
Coordinate2D<T> CartesianFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const {
if (isCircularlyDefined(context) || t < tMin() || t > tMax()) {
return Coordinate2D<T>(plotType() == PlotType::Cartesian ? t : NAN, NAN);
}
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknown[bufferSize];
Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknownX);
PlotType type = plotType();
if (type == PlotType::Cartesian || type == PlotType::Polar) {
return Coordinate2D<T>(t, PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(context), unknown, t, context));
}
assert(type == PlotType::Parametric);
Expression e = expressionReduced(context);
assert(e.type() == ExpressionNode::Type::Matrix);
assert(static_cast<Poincare::Matrix&>(e).numberOfRows() == 2);
assert(static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1);
return Coordinate2D<T>(
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context),
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context));
}
Coordinate2D<double> CartesianFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, CartesianFunction * f) const {
assert(plotType() == PlotType::Cartesian);
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
double domainMin = maxDouble(tMin(), f->tMin());
double domainMax = minDouble(tMax(), f->tMax());
if (step > 0.0f) {
start = maxDouble(start, domainMin);
max = minDouble(max, domainMax);
} else {
start = minDouble(start, domainMax);
max = maxDouble(max, domainMin);
}
return PoincareHelpers::NextIntersection(expressionReduced(context), unknownX, start, step, max, context, f->expressionReduced(context));
}
template Coordinate2D<float> CartesianFunction::templatedApproximateAtParameter<float>(float, Poincare::Context *) const;
template Coordinate2D<double> CartesianFunction::templatedApproximateAtParameter<double>(double, Poincare::Context *) const;
}