Files
Upsilon/apps/code/script_template.cpp

72 lines
1.9 KiB
C++

#include "script_template.h"
namespace Code {
constexpr ScriptTemplate emptyScriptTemplate(".py", "\x01" R"(from math import *
)");
constexpr ScriptTemplate squaresScriptTemplate("squares.py", "\x01" R"(from math import *
from turtle import *
def squares(angle=0.5):
L=330
speed(10)
penup()
goto(-L/2,-L/2)
pendown()
for i in range(660):
forward(L)
left(90+angle)
L=L-L*sin(angle*pi/180)
hideturtle())");
constexpr ScriptTemplate mandelbrotScriptTemplate("mandelbrot.py", "\x01" R"(# This script draws a Mandelbrot fractal set
# N_iteration: degree of precision
import kandinsky
def mandelbrot(N_iteration):
for x in range(320):
for y in range(222):
# Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i)
z = complex(0,0)
# Rescale to fit the drawing screen 320x222
c = complex(3.5*x/319-2.5, -2.5*y/221+1.25)
i = 0
while (i < N_iteration) and abs(z) < 2:
i = i + 1
z = z*z+c
# Choose the color of the dot from the Mandelbrot sequence
rgb = int(255*i/N_iteration)
col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25))
# Draw a pixel colored in 'col' at position (x,y)
kandinsky.set_pixel(x,y,col))");
constexpr ScriptTemplate polynomialScriptTemplate("polynomial.py", "\x01" R"(from math import *
# roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0
def roots(a,b,c):
delta = b*b-4*a*c
if delta == 0:
return -b/(2*a)
elif delta > 0:
x_1 = (-b-sqrt(delta))/(2*a)
x_2 = (-b+sqrt(delta))/(2*a)
return x_1, x_2
else:
return None)");
const ScriptTemplate * ScriptTemplate::Empty() {
return &emptyScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Squares() {
return &squaresScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Mandelbrot() {
return &mandelbrotScriptTemplate;
}
const ScriptTemplate * ScriptTemplate::Polynomial() {
return &polynomialScriptTemplate;
}
}