mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
148 lines
5.7 KiB
C++
148 lines
5.7 KiB
C++
#include "trigonometric_model.h"
|
|
#include <apps/regression/store.h>
|
|
#include "../../shared/poincare_helpers.h"
|
|
#include <poincare/addition.h>
|
|
#include <poincare/layout_helper.h>
|
|
#include <poincare/multiplication.h>
|
|
#include <poincare/number.h>
|
|
#include <poincare/power.h>
|
|
#include <poincare/preferences.h>
|
|
#include <poincare/sine.h>
|
|
#include <poincare/symbol.h>
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
|
|
using namespace Poincare;
|
|
using namespace Shared;
|
|
|
|
namespace Regression {
|
|
|
|
static double toRadians() {
|
|
return M_PI / Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit());
|
|
}
|
|
|
|
Layout TrigonometricModel::layout() {
|
|
if (m_layout.isUninitialized()) {
|
|
const char * s = "a·sin(b·X+c)+d";
|
|
m_layout = LayoutHelper::String(s, strlen(s), k_layoutFont);
|
|
}
|
|
return m_layout;
|
|
}
|
|
|
|
double TrigonometricModel::evaluate(double * modelCoefficients, double x) const {
|
|
double a = modelCoefficients[0];
|
|
double b = modelCoefficients[1];
|
|
double c = modelCoefficients[2];
|
|
double d = modelCoefficients[3];
|
|
double radian = toRadians();
|
|
// sin() is here defined for radians, so b*x+c are converted in radians.
|
|
return a * std::sin(radian * (b * x + c)) + d;
|
|
}
|
|
|
|
double TrigonometricModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const {
|
|
if (derivateCoefficientIndex == 3) {
|
|
// Derivate with respect to d: 1
|
|
return 1.0;
|
|
}
|
|
|
|
double a = modelCoefficients[0];
|
|
double b = modelCoefficients[1];
|
|
double c = modelCoefficients[2];
|
|
double radian = toRadians();
|
|
/* sin() and cos() are here defined for radians, so b*x+c are converted in
|
|
* radians. The added coefficient also appear in derivatives. */
|
|
if (derivateCoefficientIndex == 0) {
|
|
// Derivate with respect to a: sin(b*x+c)
|
|
return std::sin(radian * (b * x + c));
|
|
}
|
|
if (derivateCoefficientIndex == 1) {
|
|
// Derivate with respect to b: x*a*cos(b*x+c);
|
|
return radian * x * a * std::cos(radian * (b * x + c));
|
|
}
|
|
assert(derivateCoefficientIndex == 2);
|
|
// Derivate with respect to c: a*cos(b*x+c)
|
|
return radian * a * std::cos(radian * (b * x + c));
|
|
}
|
|
|
|
void TrigonometricModel::specializedInitCoefficientsForFit(double * modelCoefficients, double defaultValue, Store * store, int series) const {
|
|
assert(store != nullptr && series >= 0 && series < Store::k_numberOfSeries && !store->seriesIsEmpty(series));
|
|
/* We try a better initialization than the default value. We hope that this
|
|
* will improve the gradient descent to find correct coefficients.
|
|
*
|
|
* Init the "amplitude" coefficient. We take twice the standard deviation,
|
|
* because for a normal law, this interval contains 99.73% of the values. We
|
|
* do not take half of the amplitude of the series, because this would be too
|
|
* dependent on outliers. */
|
|
modelCoefficients[0] = 3.0*store->standardDeviationOfColumn(series, 1);
|
|
// Init the "y delta" coefficient
|
|
modelCoefficients[k_numberOfCoefficients - 1] = store->meanOfColumn(series, 1);
|
|
// Init the b coefficient
|
|
double rangeX = store->maxValueOfColumn(series, 0) - store->minValueOfColumn(series, 0);
|
|
double piInAngleUnit = Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit());
|
|
if (rangeX > 0) {
|
|
/* b/2π represents the frequency of the sine (in radians). Instead of
|
|
* initializing it to 0, we use the inverse of X series' range as an order
|
|
* of magnitude for it. It can help avoiding a regression that overfits the
|
|
* data with a very high frequency. This period also depends on the
|
|
* angleUnit. We take it into account so that it doesn't impact the result
|
|
* (although coefficients b and c depends on the angleUnit). */
|
|
modelCoefficients[1] = (2.0 * piInAngleUnit) / rangeX;
|
|
} else {
|
|
// Coefficient b must not depend on angleUnit.
|
|
modelCoefficients[1] = defaultValue * piInAngleUnit;
|
|
}
|
|
/* No shift is assumed, coefficient c is set to 0.
|
|
* If it were to be non-null, angleUnit must be taken into account.
|
|
* modelCoefficients[2] = initialCValue * piInAngleUnit; */
|
|
modelCoefficients[2] = 0.0;
|
|
}
|
|
|
|
void TrigonometricModel::uniformizeCoefficientsFromFit(double * modelCoefficients) const {
|
|
// Coefficients must be unique.
|
|
double piInAngleUnit = Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit());
|
|
// A must be positive.
|
|
if (modelCoefficients[0] < 0.0) {
|
|
// A * sin(B * x + C) + D = -A * sin(B * x + C + π) + D
|
|
modelCoefficients[0] *= -1.0;
|
|
modelCoefficients[2] += piInAngleUnit;
|
|
}
|
|
// B must be positive.
|
|
if (modelCoefficients[1] < 0.0) {
|
|
/* A * sin(B * x + C) + D = -A * sin(-B * x - C) + D
|
|
* -A * sin(-B * x - C) + D = A * sin(-B * x - C + π) + D */
|
|
modelCoefficients[1] *= -1.0;
|
|
modelCoefficients[2] *= -1.0;
|
|
modelCoefficients[2] += piInAngleUnit;
|
|
}
|
|
/* C must be between -π (excluded) and π (included).
|
|
* A * sin(B * x + C) + D = A * sin(B * x + C - 2π) = A * sin(B * x + C + 2π)
|
|
* Using remainder(C,2π) = C - 2π * round(C / 2π) */
|
|
modelCoefficients[2] -= 2.0 * piInAngleUnit * std::round(modelCoefficients[2] / (2.0 * piInAngleUnit));
|
|
if (modelCoefficients[2] == -piInAngleUnit) {
|
|
// Keep π instead of -π
|
|
modelCoefficients[2] = piInAngleUnit;
|
|
}
|
|
}
|
|
|
|
Expression TrigonometricModel::expression(double * modelCoefficients) {
|
|
double a = modelCoefficients[0];
|
|
double b = modelCoefficients[1];
|
|
double c = modelCoefficients[2];
|
|
double d = modelCoefficients[3];
|
|
// a*sin(bx+c)+d
|
|
Expression result =
|
|
Addition::Builder(
|
|
Multiplication::Builder(
|
|
Number::DecimalNumber(a),
|
|
Sine::Builder(
|
|
Addition::Builder(
|
|
Multiplication::Builder(
|
|
Number::DecimalNumber(b),
|
|
Symbol::Builder('x')),
|
|
Number::DecimalNumber(c)))),
|
|
Number::DecimalNumber(d));
|
|
return result;
|
|
}
|
|
|
|
}
|