mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
[apps/regression] Code review fixes
This commit is contained in:
committed by
LeaNumworks
parent
79e59f525e
commit
6e318593ae
@@ -17,15 +17,8 @@ using namespace Shared;
|
||||
|
||||
namespace Regression {
|
||||
|
||||
static double toRadians(Poincare::Preferences::AngleUnit angleUnit) {
|
||||
switch (Poincare::Preferences::sharedPreferences()->angleUnit()) {
|
||||
case Poincare::Preferences::AngleUnit::Degree:
|
||||
return M_PI/180.0;
|
||||
case Poincare::Preferences::AngleUnit::Gradian:
|
||||
return M_PI/200.0;
|
||||
default:
|
||||
return 1;
|
||||
}
|
||||
static double toRadians() {
|
||||
return M_PI / Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
}
|
||||
|
||||
Layout TrigonometricModel::layout() {
|
||||
@@ -41,7 +34,7 @@ double TrigonometricModel::evaluate(double * modelCoefficients, double x) const
|
||||
double b = modelCoefficients[1];
|
||||
double c = modelCoefficients[2];
|
||||
double d = modelCoefficients[3];
|
||||
double radian = toRadians(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
double radian = toRadians();
|
||||
// sin() is here defined for radians, so b*x+c are converted in radians.
|
||||
return a * std::sin(radian * (b * x + c)) + d;
|
||||
}
|
||||
@@ -55,7 +48,7 @@ double TrigonometricModel::partialDerivate(double * modelCoefficients, int deriv
|
||||
double a = modelCoefficients[0];
|
||||
double b = modelCoefficients[1];
|
||||
double c = modelCoefficients[2];
|
||||
double radian = toRadians(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
double radian = toRadians();
|
||||
/* sin() and cos() are here defined for radians, so b*x+c are converted in
|
||||
* radians. The added coefficient also appear in derivatives. */
|
||||
if (derivateCoefficientIndex == 0) {
|
||||
@@ -85,7 +78,7 @@ void TrigonometricModel::specializedInitCoefficientsForFit(double * modelCoeffic
|
||||
modelCoefficients[k_numberOfCoefficients - 1] = store->meanOfColumn(series, 1);
|
||||
// Init the b coefficient
|
||||
double rangeX = store->maxValueOfColumn(series, 0) - store->minValueOfColumn(series, 0);
|
||||
double radian = toRadians(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
double piInAngleUnit = Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
if (rangeX > 0) {
|
||||
/* b/2π represents the frequency of the sine (in radians). Instead of
|
||||
* initializing it to 0, we use the inverse of X series' range as an order
|
||||
@@ -93,38 +86,42 @@ void TrigonometricModel::specializedInitCoefficientsForFit(double * modelCoeffic
|
||||
* data with a very high frequency. This period also depends on the
|
||||
* angleUnit. We take it into account so that it doesn't impact the result
|
||||
* (although coefficients b and c depends on the angleUnit). */
|
||||
modelCoefficients[1] = (2.0 * M_PI / radian) / rangeX;
|
||||
modelCoefficients[1] = (2.0 * piInAngleUnit) / rangeX;
|
||||
} else {
|
||||
// Coefficient b must not depend on angleUnit.
|
||||
modelCoefficients[1] = defaultValue * M_PI / radian;
|
||||
modelCoefficients[1] = defaultValue * piInAngleUnit;
|
||||
}
|
||||
/* No shift is assumed, coefficient c is set to 0.
|
||||
* If it were to be non-null, angleUnit must be taken into account.
|
||||
* modelCoefficients[2] = initialCValue * M_PI / radian; */
|
||||
* modelCoefficients[2] = initialCValue * piInAngleUnit; */
|
||||
modelCoefficients[2] = 0.0;
|
||||
}
|
||||
|
||||
void TrigonometricModel::uniformizeCoefficientsFromFit(double * modelCoefficients) const {
|
||||
// Coefficients must be unique.
|
||||
double piInAngleUnit = M_PI / toRadians(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
double piInAngleUnit = Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit());
|
||||
// A must be positive.
|
||||
if (modelCoefficients[0] < 0) {
|
||||
if (modelCoefficients[0] < 0.0) {
|
||||
// A * sin(B * x + C) + D = -A * sin(B * x + C + π) + D
|
||||
modelCoefficients[0] *= -1;
|
||||
modelCoefficients[0] *= -1.0;
|
||||
modelCoefficients[2] += piInAngleUnit;
|
||||
}
|
||||
// B must be positive.
|
||||
if (modelCoefficients[1] < 0) {
|
||||
// A * sin(B * x + C) + D = -A * sin(-B * x - C) + D
|
||||
// -A * sin(-B * x - C) + D = A * sin(-B * x - C + π) + D
|
||||
modelCoefficients[1] *= -1;
|
||||
modelCoefficients[2] *= -1;
|
||||
if (modelCoefficients[1] < 0.0) {
|
||||
/* A * sin(B * x + C) + D = -A * sin(-B * x - C) + D
|
||||
* -A * sin(-B * x - C) + D = A * sin(-B * x - C + π) + D */
|
||||
modelCoefficients[1] *= -1.0;
|
||||
modelCoefficients[2] *= -1.0;
|
||||
modelCoefficients[2] += piInAngleUnit;
|
||||
}
|
||||
// C must be between -π and π.
|
||||
// A * sin(B * x + C) + D = A * sin(B * x + C - 2π) = A * sin(B * x + C + 2π)
|
||||
// Using remainder(C,2π) = C - 2π * round(C / 2π)
|
||||
modelCoefficients[2] -= 2 * piInAngleUnit * round(modelCoefficients[2] / (2 * piInAngleUnit));
|
||||
/* C must be between -π (excluded) and π (included).
|
||||
* A * sin(B * x + C) + D = A * sin(B * x + C - 2π) = A * sin(B * x + C + 2π)
|
||||
* Using remainder(C,2π) = C - 2π * round(C / 2π) */
|
||||
modelCoefficients[2] -= 2.0 * piInAngleUnit * std::round(modelCoefficients[2] / (2.0 * piInAngleUnit));
|
||||
if (modelCoefficients[2] == -piInAngleUnit) {
|
||||
// Keep π instead of -π
|
||||
modelCoefficients[2] = piInAngleUnit;
|
||||
}
|
||||
}
|
||||
|
||||
Expression TrigonometricModel::expression(double * modelCoefficients) {
|
||||
|
||||
Reference in New Issue
Block a user