Files
Upsilon/apps/probability/law/exponential_law.cpp
Émilie Feral adc80cd71b [apps][escher] I18n
Change-Id: I4d6f40155a8a182184af9ef2a583d0469196ffd5
2017-03-16 15:12:12 +01:00

94 lines
1.9 KiB
C++

#include "exponential_law.h"
#include <assert.h>
#include <math.h>
#include <float.h>
#include <ion.h>
namespace Probability {
ExponentialLaw::ExponentialLaw() :
OneParameterLaw(1.0f)
{
}
I18n::Message ExponentialLaw::title() {
return I18n::Message::ExponentialLaw;
}
Law::Type ExponentialLaw::type() const {
return Type::Exponential;
}
bool ExponentialLaw::isContinuous() const {
return true;
}
I18n::Message ExponentialLaw::parameterNameAtIndex(int index) {
assert(index == 0);
return I18n::Message::Lambda;
}
I18n::Message ExponentialLaw::parameterDefinitionAtIndex(int index) {
assert(index == 0);
return I18n::Message::LambdaExponentialDefinition;
}
float ExponentialLaw::xMin() {
float max = xMax();
return - k_displayLeftMarginRatio * max;
}
float ExponentialLaw::xMax() {
assert(m_parameter1 != 0.0f);
float result = 5.0f/m_parameter1;
if (result <= 0.0f) {
result = 1.0f;
}
return result*(1.0f+ k_displayRightMarginRatio);
}
float ExponentialLaw::yMin() {
return -k_displayBottomMarginRatio*yMax();
}
float ExponentialLaw::yMax() {
float result = m_parameter1;
if (result <= 0.0f || isnan(result)) {
result = 1.0f;
}
if (result <= 0.0f) {
result = 1.0f;
}
return result*(1.0f+ k_displayTopMarginRatio);
}
float ExponentialLaw::evaluateAtAbscissa(float x) const {
if (x < 0.0f) {
return NAN;
}
return m_parameter1*expf(-m_parameter1*x);
}
bool ExponentialLaw::authorizedValueAtIndex(float x, int index) const {
if (x <= 0.0f) {
return false;
}
return true;
}
float ExponentialLaw::cumulativeDistributiveFunctionAtAbscissa(float x) const {
return 1.0f - expf(-m_parameter1*x);
}
float ExponentialLaw::cumulativeDistributiveInverseForProbability(float * probability) {
if (*probability >= 1.0f) {
return INFINITY;
}
if (*probability <= 0.0f) {
return 0.0f;
}
return -logf(1.0f - *probability)/m_parameter1;
}
}