Files
Upsilon/apps/shared/continuous_function.cpp
circuit10 b44a95a9b3 Casio fx-CG series port (#324)
* Initial test - working on Linux

* Try to make it work with liba

* Stop using liba and the filesystem

* IT WORKS

* Key input, full res, fix some of the crashes

* Fix the hang when doing calculations

* Add some more key mappings

* Fix the square root issue

* Icons

* Better key mappings, brightness control, better gamma correction, more effficient framebuffer

* Cleanup stage 1

* Cleanup stage 2

* Make the build system build a g3a

* Make it not exit when you press the menu button

* Add Casio port to README

* Use omega-master instead of omega-dev

* Fix mistake with cherry-picking in the README

* Fix internal storage crash

* Fix compile error on Numworks calculators

* Upsilon branding

* Sharper icon

* Make the CI work

* Add power off and improve menu

* Map Alpha + up/down to the brightness shortcut

* Add missing file

* Fix web CI build

* Revert "Fix web CI build"

This reverts commit f19657d9fc.

* Change "prizm" to "fxcg"

* Add FASTLOAD option for Add-in Push

* Add some charatcers to the catalog on Casio and improve key mappings

* Build with -Os -flto

* Disable LTO for now as it's causing crashes

* Put back the fonts I accidently changed

I'd like to add an option for this though as I prefer the ones from Epsilon
2023-05-10 18:28:18 +02:00

436 lines
19 KiB
C++

#include "continuous_function.h"
#include "poincare_helpers.h"
#include <apps/constant.h>
#include <poincare/derivative.h>
#include <poincare/integral.h>
#include <poincare/matrix.h>
#include <poincare/multiplication.h>
#include <poincare/rational.h>
#include <poincare/serialization_helper.h>
#include <poincare/trigonometry.h>
#include <escher/palette.h>
#include <ion/unicode/utf8_helper.h>
#include <ion/unicode/utf8_decoder.h>
#include <apps/i18n.h>
#include <float.h>
#include <cmath>
#include <algorithm>
using namespace Poincare;
namespace Shared {
void ContinuousFunction::DefaultName(char buffer[], size_t bufferSize) {
constexpr int k_maxNumberOfDefaultLetterNames = 4;
static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = {
'f', 'g', 'h', 'p'
};
/* First default names are f, g, h, p and then f0, f1... ie, "f[number]",
* for instance "f12", that does not exist yet in the storage. */
size_t constantNameLength = 1; // 'f', no null-terminating char
assert(bufferSize > constantNameLength+1);
// Find the next available name
int currentNumber = -k_maxNumberOfDefaultLetterNames;
int currentNumberLength = 0;
int availableBufferSize = bufferSize - constantNameLength;
while (currentNumberLength < availableBufferSize) {
// Choose letter
buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0];
// Choose number if required
if (currentNumber >= 0) {
currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize);
} else {
buffer[1] = 0;
}
if (GlobalContext::SymbolAbstractNameIsFree(buffer)) {
// Name found
break;
}
currentNumber++;
}
assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize);
}
ContinuousFunction ContinuousFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) {
static int s_colorIndex = 0;
// Create the record
char nameBuffer[SymbolAbstract::k_maxNameSize];
RecordDataBuffer data(Palette::nextDataColor(&s_colorIndex));
if (baseName == nullptr) {
DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize);
baseName = nameBuffer;
}
*error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data));
// Return if error
if (*error != Ion::Storage::Record::ErrorStatus::None) {
return ContinuousFunction();
}
// Return the ContinuousFunction withthe new record
return ContinuousFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension));
}
int ContinuousFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) {
// Fill buffer with f(x). Keep size for derivative sign.
int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\'');
int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize);
assert(numberOfChars + derivativeSize < (int)bufferSize);
char * firstParenthesis = const_cast<char *>(UTF8Helper::CodePointSearch(buffer, '('));
if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) {
return numberOfChars;
}
memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1);
UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize);
return numberOfChars + derivativeSize;
}
Poincare::Expression ContinuousFunction::expressionReduced(Poincare::Context * context) const {
Poincare::Expression result = ExpressionModelHandle::expressionReduced(context);
if (plotType() == PlotType::Parametric && (
result.type() != Poincare::ExpressionNode::Type::Matrix ||
static_cast<Poincare::Matrix&>(result).numberOfRows() != 2 ||
static_cast<Poincare::Matrix&>(result).numberOfColumns() != 1)
) {
return Poincare::Expression::Parse("[[undef][undef]]", nullptr);
}
return result;
}
I18n::Message ContinuousFunction::parameterMessageName() const {
return ParameterMessageForPlotType(plotType());
}
CodePoint ContinuousFunction::symbol() const {
switch (plotType()) {
case PlotType::Cartesian:
return 'x';
case PlotType::Polar:
return UCodePointGreekSmallLetterTheta;
default:
assert(plotType() == PlotType::Parametric);
return 't';
}
}
ContinuousFunction::PlotType ContinuousFunction::plotType() const {
return recordData()->plotType();
}
void ContinuousFunction::setPlotType(PlotType newPlotType, Poincare::Preferences::AngleUnit angleUnit, Context * context) {
PlotType currentPlotType = plotType();
if (newPlotType == currentPlotType) {
return;
}
recordData()->setPlotType(newPlotType);
setCache(nullptr);
// Recompute the layouts
m_model.tidy();
// Recompute the definition domain
double tMin = newPlotType == PlotType::Cartesian ? -INFINITY : 0.0;
double tMax = newPlotType == PlotType::Cartesian ? INFINITY : 2.0*Trigonometry::PiInAngleUnit(angleUnit);
setTMin(tMin);
setTMax(tMax);
/* Recompute the unknowns. For instance, if the function was f(x) = xθ, it is
* stored as f(?) = ?θ. When switching to polar type, it should be stored as
* f(?) = ?? */
constexpr int previousTextContentMaxSize = Constant::MaxSerializedExpressionSize;
char previousTextContent[previousTextContentMaxSize];
m_model.text(this, previousTextContent, previousTextContentMaxSize, symbol());
setContent(previousTextContent, context);
// Handle parametric function switch
if (currentPlotType == PlotType::Parametric) {
Expression e = expressionClone();
// Change [x(t) y(t)] to y(t)
if (!e.isUninitialized()
&& e.type() == ExpressionNode::Type::Matrix
&& static_cast<Poincare::Matrix&>(e).numberOfRows() == 2
&& static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1)
{
Expression nextContent = e.childAtIndex(1);
/* We need to detach it, otherwise nextContent will think it has a parent
* when we retrieve it from the storage. */
nextContent.detachFromParent();
setExpressionContent(nextContent);
}
return;
} else if (newPlotType == PlotType::Parametric) {
Expression e = expressionClone();
// Change y(t) to [t y(t)]
Matrix newExpr = Matrix::Builder();
newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknown), 0, 0);
// if y(t) was not uninitialized, insert [t 2t] to set an example
e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknown)) : e;
newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren());
newExpr.setDimensions(2, 1);
setExpressionContent(newExpr);
}
}
I18n::Message ContinuousFunction::ParameterMessageForPlotType(PlotType plotType) {
if (plotType == PlotType::Cartesian) {
return I18n::Message::X;
}
if (plotType == PlotType::Polar) {
return I18n::Message::Theta;
}
assert(plotType == PlotType::Parametric);
return I18n::Message::T;
}
template <typename T>
Poincare::Coordinate2D<T> ContinuousFunction::privateEvaluateXYAtParameter(T t, Poincare::Context * context) const {
Coordinate2D<T> x1x2 = templatedApproximateAtParameter(t, context);
PlotType type = plotType();
if (type == PlotType::Cartesian || type == PlotType::Parametric) {
return x1x2;
}
assert(type == PlotType::Polar);
T factor = (T)1.0;
Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
if (angleUnit == Preferences::AngleUnit::Degree) {
factor = (T) (M_PI/180.0);
} else if (angleUnit == Preferences::AngleUnit::Gradian) {
factor = (T) (M_PI/200.0);
} else {
assert(angleUnit == Preferences::AngleUnit::Radian);
}
const float angle = x1x2.x1()*factor;
return Coordinate2D<T>(x1x2.x2() * std::cos(angle), x1x2.x2() * std::sin(angle));
}
bool ContinuousFunction::displayDerivative() const {
return recordData()->displayDerivative();
}
void ContinuousFunction::setDisplayDerivative(bool display) {
return recordData()->setDisplayDerivative(display);
}
int ContinuousFunction::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) {
PlotType type = plotType();
if (type == PlotType::Cartesian) {
return Function::printValue(cursorT, cursorX, cursorY, buffer, bufferSize, precision, context);
}
if (type == PlotType::Polar) {
return PoincareHelpers::ConvertFloatToText<double>(evaluate2DAtParameter(cursorT, context).x2(), buffer, bufferSize, precision);
}
assert(type == PlotType::Parametric);
int result = 0;
result += UTF8Decoder::CodePointToChars('(', buffer+result, bufferSize-result);
result += PoincareHelpers::ConvertFloatToText<double>(cursorX, buffer+result, bufferSize-result, precision);
result += UTF8Decoder::CodePointToChars(';', buffer+result, bufferSize-result);
result += PoincareHelpers::ConvertFloatToText<double>(cursorY, buffer+result, bufferSize-result, precision);
result += UTF8Decoder::CodePointToChars(')', buffer+result, bufferSize-result);
return result;
}
double ContinuousFunction::approximateDerivative(double x, Poincare::Context * context) const {
assert(plotType() == PlotType::Cartesian);
if (x < tMin() || x > tMax()) {
return NAN;
}
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknown), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
/* TODO: when we approximate derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(derivative, context);
}
float ContinuousFunction::tMin() const {
return recordData()->tMin();
}
float ContinuousFunction::tMax() const {
return recordData()->tMax();
}
void ContinuousFunction::setTMin(float tMin) {
recordData()->setTMin(tMin);
setCache(nullptr);
}
void ContinuousFunction::setTMax(float tMax) {
recordData()->setTMax(tMax);
setCache(nullptr);
}
void ContinuousFunction::rangeForDisplay(float * xMin, float * xMax, float * yMin, float * yMax, float targetRatio, Poincare::Context * context) const {
if (plotType() != PlotType::Cartesian) {
assert(std::isfinite(tMin()) && std::isfinite(tMax()) && std::isfinite(rangeStep()) && rangeStep() > 0);
protectedFullRangeForDisplay(tMin(), tMax(), rangeStep(), xMin, xMax, context, true);
protectedFullRangeForDisplay(tMin(), tMax(), rangeStep(), yMin, yMax, context, false);
return;
}
if (!basedOnCostlyAlgorithms(context)) {
Zoom::ValueAtAbscissa evaluation = [](float x, Context * context, const void * auxiliary) -> float {
/* When evaluating sin(x)/x close to zero using the standard sine function,
* one can detect small variations, while the cardinal sine is supposed to be
* locally monotonous. To smooth our such variations, we round the result of
* the evaluations. As we are not interested in precise results but only in
* ordering, this approximation is sufficient. */
constexpr float precision = 1e-5;
return precision * std::round(static_cast<const Function *>(auxiliary)->evaluateXYAtParameter(x, context).x2() / precision);
};
bool fullyComputed = Zoom::InterestingRangesForDisplay(evaluation, xMin, xMax, yMin, yMax, tMin(), tMax(), context, this);
evaluation = [](float x, Context * context, const void * auxiliary) {
return static_cast<const Function *>(auxiliary)->evaluateXYAtParameter(x, context).x2();
};
if (fullyComputed) {
/* The function has points of interest. */
Zoom::RefinedYRangeForDisplay(evaluation, xMin, xMax, yMin, yMax, context, this);
return;
}
/* Try to display an orthonormal range. */
Zoom::RangeWithRatioForDisplay(evaluation, targetRatio, xMin, xMax, yMin, yMax, context, this);
if (std::isfinite(*xMin) && std::isfinite(*xMax) && std::isfinite(*yMin) && std::isfinite(*yMax)) {
return;
}
/* The function's profile is not great for an orthonormal range.
* Try a basic range. */
*xMin = - Zoom::k_defaultHalfRange;
*xMax = Zoom::k_defaultHalfRange;
Zoom::RefinedYRangeForDisplay(evaluation, xMin, xMax, yMin, yMax, context, this);
if (std::isfinite(*xMin) && std::isfinite(*xMax) && std::isfinite(*yMin) && std::isfinite(*yMax)) {
return;
}
/* The function's order of magnitude cannot be computed. Try to just display
* the full function. */
float step = (*xMax - *xMin) / k_polarParamRangeSearchNumberOfPoints;
Zoom::FullRange(evaluation, *xMin, *xMax, step, yMin, yMax, context, this);
if (std::isfinite(*xMin) && std::isfinite(*xMax) && std::isfinite(*yMin) && std::isfinite(*yMax)) {
return;
}
}
/* The function makes use of some costly algorithms and cannot be computed in
* a timely manner, or it is probably undefined. */
*xMin = NAN;
*xMax = NAN;
*yMin = NAN;
*yMax = NAN;
}
void * ContinuousFunction::Model::expressionAddress(const Ion::Storage::Record * record) const {
return (char *)record->value().buffer+sizeof(RecordDataBuffer);
}
size_t ContinuousFunction::Model::expressionSize(const Ion::Storage::Record * record) const {
return record->value().size-sizeof(RecordDataBuffer);
}
ContinuousFunction::RecordDataBuffer * ContinuousFunction::recordData() const {
assert(!isNull());
Ion::Storage::Record::Data d = value();
return reinterpret_cast<RecordDataBuffer *>(const_cast<void *>(d.buffer));
}
template<typename T>
Coordinate2D<T> ContinuousFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const {
if (t < tMin() || t > tMax()) {
return Coordinate2D<T>(plotType() == PlotType::Cartesian ? t : NAN, NAN);
}
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknown[bufferSize];
Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknown);
PlotType type = plotType();
Expression e = expressionReduced(context);
if (type != PlotType::Parametric) {
assert(type == PlotType::Cartesian || type == PlotType::Polar);
return Coordinate2D<T>(t, PoincareHelpers::ApproximateWithValueForSymbol(e, unknown, t, context));
}
assert(e.type() == ExpressionNode::Type::Matrix);
assert(static_cast<Poincare::Matrix&>(e).numberOfRows() == 2);
assert(static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1);
return Coordinate2D<T>(
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context),
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context));
}
Coordinate2D<double> ContinuousFunction::nextMinimumFrom(double start, double step, double max, Context * context) const {
return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return PoincareHelpers::NextMinimum(e, symbol, start, step, max, context); });
}
Coordinate2D<double> ContinuousFunction::nextMaximumFrom(double start, double step, double max, Context * context) const {
return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return PoincareHelpers::NextMaximum(e, symbol, start, step, max, context); });
}
Coordinate2D<double> ContinuousFunction::nextRootFrom(double start, double step, double max, Context * context) const {
return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return Coordinate2D<double>(PoincareHelpers::NextRoot(e, symbol, start, step, max, context), 0.0); });
}
Coordinate2D<double> ContinuousFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, Poincare::Expression e, double eDomainMin, double eDomainMax) const {
assert(plotType() == PlotType::Cartesian);
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown);
double domainMin = std::max<double>(tMin(), eDomainMin);
double domainMax = std::min<double>(tMax(), eDomainMax);
if (step > 0.0f) {
start = std::max(start, domainMin);
max = std::min(max, domainMax);
} else {
start = std::min(start, domainMax);
max = std::max(max, domainMin);
}
return PoincareHelpers::NextIntersection(expressionReduced(context), unknownX, start, step, max, context, e);
}
Coordinate2D<double> ContinuousFunction::nextPointOfInterestFrom(double start, double step, double max, Context * context, ComputePointOfInterest compute) const {
assert(plotType() == PlotType::Cartesian);
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown);
if (step > 0.0f) {
start = std::max<double>(start, tMin());
max = std::min<double>(max, tMax());
} else {
start = std::min<double>(start, tMax());
max = std::max<double>(max, tMin());
}
return compute(expressionReduced(context), unknownX, start, step, max, context);
}
Poincare::Expression ContinuousFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const {
assert(plotType() == PlotType::Cartesian);
start = std::max<double>(start, tMin());
end = std::min<double>(end, tMax());
return Poincare::Integral::Builder(expressionReduced(context).clone(), Poincare::Symbol::Builder(UCodePointUnknown), Poincare::Float<double>::Builder(start), Poincare::Float<double>::Builder(end)); // Integral takes ownership of args
/* TODO: when we approximate integral, we might want to simplify the integral
* here. However, we might want to do it once for all x (to avoid lagging in
* the derivative table. */
}
Ion::Storage::Record::ErrorStatus ContinuousFunction::setContent(const char * c, Poincare::Context * context) {
setCache(nullptr);
return ExpressionModelHandle::setContent(c, context);
}
bool ContinuousFunction::basedOnCostlyAlgorithms(Context * context) const {
return expressionReduced(context).hasExpression([](const Expression e, const void * context) {
return e.type() == ExpressionNode::Type::Sequence
|| e.type() == ExpressionNode::Type::Integral
|| e.type() == ExpressionNode::Type::Derivative;
}, nullptr);
}
template Coordinate2D<float> ContinuousFunction::templatedApproximateAtParameter<float>(float, Poincare::Context *) const;
template Coordinate2D<double> ContinuousFunction::templatedApproximateAtParameter<double>(double, Poincare::Context *) const;
template Poincare::Coordinate2D<float> ContinuousFunction::privateEvaluateXYAtParameter<float>(float, Poincare::Context *) const;
template Poincare::Coordinate2D<double> ContinuousFunction::privateEvaluateXYAtParameter<double>(double, Poincare::Context *) const;
}