mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 08:47:28 +01:00
The new zoom implemented for ContinuousFunction is now factorized inside Function to benefit the Sequence class. The same things is done to code added to Graph::GraphController, which is moved into FunctionGraphController. This removes the reimplementation of several methods, most notably computeYRange, as the implementation for function is general enough to work on sequences. Change-Id: I9b8211354064f46c3fa3dde3191dcb39d627a1d2
335 lines
13 KiB
C++
335 lines
13 KiB
C++
#include "function.h"
|
|
#include "range_1D.h"
|
|
#include "poincare_helpers.h"
|
|
#include "poincare/src/parsing/parser.h"
|
|
#include <ion/display.h>
|
|
#include <ion/unicode/utf8_decoder.h>
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
#include <float.h>
|
|
#include <string.h>
|
|
|
|
using namespace Poincare;
|
|
|
|
namespace Shared {
|
|
|
|
Function::NameNotCompliantError Function::BaseNameCompliant(const char * baseName) {
|
|
assert(baseName[0] != 0);
|
|
|
|
UTF8Decoder decoder(baseName);
|
|
CodePoint c = decoder.nextCodePoint();
|
|
if (c.isDecimalDigit()) {
|
|
return NameNotCompliantError::NameCannotStartWithNumber;
|
|
}
|
|
|
|
while (c != UCodePointNull) {
|
|
// FIXME '_' should be accepted but not as first character
|
|
// TODO Factor this piece of code with similar one in the Parser
|
|
if (!(c.isDecimalDigit() || c.isLatinLetter()) || c == '_') {
|
|
return NameNotCompliantError::CharacterNotAllowed;
|
|
}
|
|
c = decoder.nextCodePoint();
|
|
}
|
|
|
|
if (Parser::IsReservedName(baseName, strlen(baseName))) {
|
|
return NameNotCompliantError::ReservedName;
|
|
}
|
|
return NameNotCompliantError::None;
|
|
}
|
|
|
|
bool Function::isActive() const {
|
|
return recordData()->isActive();
|
|
}
|
|
|
|
KDColor Function::color() const {
|
|
return recordData()->color();
|
|
}
|
|
|
|
void Function::setActive(bool active) {
|
|
recordData()->setActive(active);
|
|
}
|
|
|
|
int Function::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) {
|
|
return PoincareHelpers::ConvertFloatToText<double>(cursorY, buffer, bufferSize, precision);
|
|
}
|
|
|
|
int Function::name(char * buffer, size_t bufferSize) {
|
|
return SymbolAbstract::TruncateExtension(buffer, fullName(), bufferSize);
|
|
}
|
|
|
|
int Function::nameWithArgument(char * buffer, size_t bufferSize) {
|
|
int funcNameSize = name(buffer, bufferSize);
|
|
assert(funcNameSize > 0);
|
|
size_t result = funcNameSize;
|
|
assert(result <= bufferSize);
|
|
buffer[result++] = '(';
|
|
assert(result <= bufferSize);
|
|
assert(UTF8Decoder::CharSizeOfCodePoint(symbol()) <= 2);
|
|
result += UTF8Decoder::CodePointToChars(symbol(), buffer+result, bufferSize-result);
|
|
assert(result <= bufferSize);
|
|
result += strlcpy(buffer+result, ")", bufferSize-result);
|
|
return result;
|
|
}
|
|
|
|
Function::RecordDataBuffer * Function::recordData() const {
|
|
assert(!isNull());
|
|
Ion::Storage::Record::Data d = value();
|
|
return reinterpret_cast<RecordDataBuffer *>(const_cast<void *>(d.buffer));
|
|
}
|
|
|
|
// Ranges
|
|
static float evaluateAndRound(const Function * f, float x, Context * context, float precision = 1e-5) {
|
|
/* When evaluating sin(x)/x close to zero using the standard sine function,
|
|
* one can detect small varitions, while the cardinal sine is supposed to be
|
|
* locally monotonous. To smooth our such variations, we round the result of
|
|
* the evaluations. As we are not interested in precise results but only in
|
|
* ordering, this approximation is sufficient. */
|
|
return precision * std::round(f->evaluateXYAtParameter(x, context).x2() / precision);
|
|
}
|
|
|
|
/* TODO : These three methods perform checks that will also be relevant for the
|
|
* equation solver. Remember to factorize this code when integrating the new
|
|
* solver. */
|
|
static bool boundOfIntervalOfDefinitionIsReached(float y1, float y2) {
|
|
return std::isfinite(y1) && !std::isinf(y2) && std::isnan(y2);
|
|
}
|
|
static bool rootExistsOnInterval(float y1, float y2) {
|
|
return ((y1 < 0.f && y2 > 0.f) || (y1 > 0.f && y2 < 0.f));
|
|
}
|
|
static bool extremumExistsOnInterval(float y1, float y2, float y3) {
|
|
return (y1 < y2 && y2 > y3) || (y1 > y2 && y2 < y3);
|
|
}
|
|
|
|
/* This function checks whether an interval contains an extremum or an
|
|
* asymptote, by recursively computing the slopes. In case of an extremum, the
|
|
* slope should taper off toward the center. */
|
|
static bool isExtremum(const Function * f, float x1, float x2, float x3, float y1, float y2, float y3, Context * context, int iterations = 3) {
|
|
if (iterations <= 0) {
|
|
return false;
|
|
}
|
|
float x[2] = {x1, x3}, y[2] = {y1, y3};
|
|
float xm, ym;
|
|
for (int i = 0; i < 2; i++) {
|
|
xm = (x[i] + x2) / 2.f;
|
|
ym = evaluateAndRound(f, xm, context);
|
|
bool res = ((y[i] < ym) != (ym < y2)) ? isExtremum(f, x[i], xm, x2, y[i], ym, y2, context, iterations - 1) : std::fabs(ym - y[i]) >= std::fabs(y2 - ym);
|
|
if (!res) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
enum class PointOfInterest : uint8_t {
|
|
None,
|
|
Bound,
|
|
Extremum,
|
|
Root
|
|
};
|
|
|
|
void Function::rangeForDisplay(float * xMin, float * xMax, float * yMin, float * yMax, Context * context, bool tuneXRange) const {
|
|
assert(xMin && xMax && yMin && yMax);
|
|
|
|
/* Constants of the algorithm. */
|
|
constexpr float defaultMaxInterval = 2e5f;
|
|
constexpr float minDistance = 1e-2f;
|
|
constexpr float asymptoteThreshold = 2e-1f;
|
|
constexpr float stepFactor = 1.1f;
|
|
constexpr int maxNumberOfPoints = 3;
|
|
constexpr float breathingRoom = 0.3f;
|
|
constexpr float maxRatioBetweenPoints = 100.f;
|
|
|
|
const bool hasIntervalOfDefinition = std::isfinite(tMin()) && std::isfinite(tMax());
|
|
float center, maxDistance;
|
|
if (!tuneXRange) {
|
|
center = (*xMax + *xMin) / 2.f;
|
|
maxDistance = (*xMax - *xMin) / 2.f;
|
|
} else if (hasIntervalOfDefinition) {
|
|
center = (tMax() + tMin()) / 2.f;
|
|
maxDistance = (tMax() - tMin()) / 2.f;
|
|
} else {
|
|
center = 0.f;
|
|
maxDistance = defaultMaxInterval / 2.f;
|
|
}
|
|
|
|
float resultX[2] = {FLT_MAX, - FLT_MAX};
|
|
float resultYMin = FLT_MAX, resultYMax = - FLT_MAX;
|
|
float asymptote[2] = {FLT_MAX, - FLT_MAX};
|
|
int numberOfPoints;
|
|
float xFallback, yFallback[2] = {NAN, NAN};
|
|
float firstResult;
|
|
float dXOld, dXPrev, dXNext, yOld, yPrev, yNext;
|
|
|
|
/* Look for a point of interest at the center. */
|
|
const float a = center - minDistance - FLT_EPSILON, b = center + FLT_EPSILON, c = center + minDistance + FLT_EPSILON;
|
|
const float ya = evaluateAndRound(this, a, context), yb = evaluateAndRound(this, b, context), yc = evaluateAndRound(this, c, context);
|
|
if (boundOfIntervalOfDefinitionIsReached(ya, yc) ||
|
|
boundOfIntervalOfDefinitionIsReached(yc, ya) ||
|
|
rootExistsOnInterval(ya, yc) ||
|
|
extremumExistsOnInterval(ya, yb, yc) || ya == yc)
|
|
{
|
|
resultX[0] = resultX[1] = center;
|
|
if (extremumExistsOnInterval(ya, yb, yc) && isExtremum(this, a, b, c, ya, yb, yc, context)) {
|
|
resultYMin = resultYMax = yb;
|
|
}
|
|
}
|
|
|
|
/* We search for points of interest by exploring the function leftward from
|
|
* the center and then rightward, hence the two iterations. */
|
|
for (int i = 0; i < 2; i++) {
|
|
/* Initialize the search parameters. */
|
|
numberOfPoints = 0;
|
|
firstResult = NAN;
|
|
xFallback = NAN;
|
|
dXPrev = i == 0 ? - minDistance : minDistance;
|
|
dXNext = dXPrev * stepFactor;
|
|
yPrev = evaluateAndRound(this, center + dXPrev, context);
|
|
yNext = evaluateAndRound(this, center + dXNext, context);
|
|
|
|
while(std::fabs(dXPrev) < maxDistance) {
|
|
/* Update the slider. */
|
|
dXOld = dXPrev;
|
|
dXPrev = dXNext;
|
|
dXNext *= stepFactor;
|
|
yOld = yPrev;
|
|
yPrev = yNext;
|
|
yNext = evaluateAndRound(this, center + dXNext, context);
|
|
if (std::isinf(yNext)) {
|
|
continue;
|
|
}
|
|
/* Check for a change in the profile. */
|
|
const PointOfInterest variation = boundOfIntervalOfDefinitionIsReached(yPrev, yNext) ? PointOfInterest::Bound :
|
|
rootExistsOnInterval(yPrev, yNext) ? PointOfInterest::Root :
|
|
extremumExistsOnInterval(yOld, yPrev, yNext) ? PointOfInterest::Extremum :
|
|
PointOfInterest::None;
|
|
switch (static_cast<uint8_t>(variation)) {
|
|
/* The fallthrough is intentional, as we only want to update the Y
|
|
* range when an extremum is detected, but need to update the X range
|
|
* in all cases. */
|
|
case static_cast<uint8_t>(PointOfInterest::Extremum):
|
|
if (isExtremum(this, center + dXOld, center + dXPrev, center + dXNext, yOld, yPrev, yNext, context)) {
|
|
resultYMin = std::min(resultYMin, yPrev);
|
|
resultYMax = std::max(resultYMax, yPrev);
|
|
}
|
|
case static_cast<uint8_t>(PointOfInterest::Bound):
|
|
/* We only count extrema / discontinuities for limiting the number
|
|
* of points. This prevents cos(x) and cos(x)+2 from having different
|
|
* profiles. */
|
|
if (++numberOfPoints == maxNumberOfPoints) {
|
|
/* When too many points are encountered, we prepare their erasure by
|
|
* setting a restore point. */
|
|
xFallback = dXNext + center;
|
|
yFallback[0] = resultYMin;
|
|
yFallback[1] = resultYMax;
|
|
}
|
|
case static_cast<uint8_t>(PointOfInterest::Root):
|
|
asymptote[i] = i == 0 ? FLT_MAX : - FLT_MAX;
|
|
resultX[0] = std::min(resultX[0], center + (i == 0 ? dXNext : dXPrev));
|
|
resultX[1] = std::max(resultX[1], center + (i == 1 ? dXNext : dXPrev));
|
|
if (std::isnan(firstResult)) {
|
|
firstResult = dXNext;
|
|
}
|
|
break;
|
|
default:
|
|
const float slopeNext = (yNext - yPrev) / (dXNext - dXPrev), slopePrev = (yPrev - yOld) / (dXPrev - dXOld);
|
|
if ((std::fabs(slopeNext) < asymptoteThreshold) && (std::fabs(slopePrev) > asymptoteThreshold)) {
|
|
// Horizontal asymptote begins
|
|
asymptote[i] = (i == 0) ? std::min(asymptote[i], center + dXNext) : std::max(asymptote[i], center + dXNext);
|
|
} else if ((std::fabs(slopeNext) < asymptoteThreshold) && (std::fabs(slopePrev) > asymptoteThreshold)) {
|
|
// Horizontal asymptote invalidates : it might be an asymptote when
|
|
// going the other way.
|
|
asymptote[1 - i] = (i == 1) ? std::min(asymptote[1 - i], center + dXPrev) : std::max(asymptote[1 - i], center + dXPrev);
|
|
}
|
|
}
|
|
}
|
|
if (std::fabs(resultX[i]) > std::fabs(firstResult) * maxRatioBetweenPoints && !std::isnan(xFallback)) {
|
|
/* When there are too many points, cut them if their orders are too
|
|
* different. */
|
|
resultX[i] = xFallback;
|
|
resultYMin = yFallback[0];
|
|
resultYMax = yFallback[1];
|
|
}
|
|
}
|
|
|
|
if (tuneXRange) {
|
|
/* Cut after horizontal asymptotes. */
|
|
resultX[0] = std::min(resultX[0], asymptote[0]);
|
|
resultX[1] = std::max(resultX[1], asymptote[1]);
|
|
if (resultX[0] >= resultX[1]) {
|
|
/* Fallback to default range. */
|
|
resultX[0] = - Range1D::k_default;
|
|
resultX[1] = Range1D::k_default;
|
|
} else {
|
|
/* Add breathing room around points of interest. */
|
|
float xRange = resultX[1] - resultX[0];
|
|
resultX[0] -= breathingRoom * xRange;
|
|
resultX[1] += breathingRoom * xRange;
|
|
/* Round to the next integer. */
|
|
resultX[0] = std::floor(resultX[0]);
|
|
resultX[1] = std::ceil(resultX[1]);
|
|
}
|
|
*xMin = std::min(resultX[0], *xMin);
|
|
*xMax = std::max(resultX[1], *xMax);
|
|
}
|
|
*yMin = std::min(resultYMin, *yMin);
|
|
*yMax = std::max(resultYMax, *yMax);
|
|
|
|
refinedYRangeForDisplay(*xMin, *xMax, yMin, yMax, context);
|
|
}
|
|
|
|
void Function::protectedRefinedYRangeForDisplay(float xMin, float xMax, float * yMin, float * yMax, Context * context, bool boundByMagnitude) const {
|
|
/* This methods computes the Y range that will be displayed for cartesian
|
|
* functions and sequences, given an X range (xMin, xMax) and bounds yMin and
|
|
* yMax that must be inside the Y range.*/
|
|
assert(yMin && yMax);
|
|
|
|
constexpr int sampleSize = Ion::Display::Width / 4;
|
|
constexpr float boundNegligigbleThreshold = 0.2f;
|
|
|
|
float sampleYMin = FLT_MAX, sampleYMax = -FLT_MAX;
|
|
const float step = (xMax - xMin) / (sampleSize - 1);
|
|
float x, y;
|
|
float sum = 0.f;
|
|
int pop = 0;
|
|
|
|
for (int i = 1; i < sampleSize; i++) {
|
|
x = xMin + i * step;
|
|
y = evaluateXYAtParameter(x, context).x2();
|
|
if (!std::isfinite(y)) {
|
|
continue;
|
|
}
|
|
sampleYMin = std::min(sampleYMin, y);
|
|
sampleYMax = std::max(sampleYMax, y);
|
|
if (std::fabs(y) > FLT_EPSILON) {
|
|
sum += std::log(std::fabs(y));
|
|
pop++;
|
|
}
|
|
}
|
|
/* sum/pop is the log mean value of the function, which can be interpreted as
|
|
* its average order of magnitude. Then, bound is the value for the next
|
|
* order of magnitude and is used to cut the Y range. */
|
|
if (boundByMagnitude) {
|
|
float bound = (pop > 0) ? std::exp(sum / pop + 1.f) : FLT_MAX;
|
|
sampleYMin = std::max(sampleYMin, - bound);
|
|
sampleYMax = std::min(sampleYMax, bound);
|
|
}
|
|
*yMin = std::min(*yMin, sampleYMin);
|
|
*yMax = std::max(*yMax, sampleYMax);
|
|
if (*yMin == *yMax) {
|
|
float d = (*yMin == 0.f) ? 1.f : *yMin * 0.2f;
|
|
*yMin -= d;
|
|
*yMax += d;
|
|
}
|
|
/* Round out the smallest bound to 0 if it is negligible compare to the
|
|
* other one. This way, we can display the X axis for positive functions such
|
|
* as sqrt(x) even if we do not sample close to 0. */
|
|
if (*yMin > 0.f && *yMin / *yMax < boundNegligigbleThreshold) {
|
|
*yMin = 0.f;
|
|
} else if (*yMax < 0.f && *yMax / *yMin < boundNegligigbleThreshold) {
|
|
*yMax = 0.f;
|
|
}
|
|
}
|
|
|
|
}
|