Files
Upsilon/apps/shared/cartesian_function.cpp
Léa Saviot d97d5d40f5 [apps/cartesian_function] Fix derivative name display
Scenario: f(x) = x, go to the Values tab of the Graph app, display the
derivative, there is a roblem with UTF8
2019-05-03 15:54:22 +02:00

150 lines
7.0 KiB
C++

#include "cartesian_function.h"
#include "expression_model_store.h"
#include "poincare_helpers.h"
#include <poincare/derivative.h>
#include <poincare/integral.h>
#include <poincare/serialization_helper.h>
#include <escher/palette.h>
#include <ion/unicode/utf8_decoder.h>
#include <float.h>
#include <cmath>
using namespace Poincare;
namespace Shared {
void CartesianFunction::DefaultName(char buffer[], size_t bufferSize) {
constexpr int k_maxNumberOfDefaultLetterNames = 4;
static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = {
'f', 'g', 'h', 'p'
};
/* First default names are f, g, h, p and then f0, f1... ie, "f[number]",
* for instance "f12", that does not exist yet in the storage. */
size_t constantNameLength = 1; // 'f', no null-terminating char
assert(bufferSize > constantNameLength+1);
// Find the next available name
int currentNumber = -k_maxNumberOfDefaultLetterNames;
int currentNumberLength = 0;
int availableBufferSize = bufferSize - constantNameLength;
while (currentNumberLength < availableBufferSize) {
// Choose letter
buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0];
// Choose number if required
if (currentNumber >= 0) {
currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize);
} else {
buffer[1] = 0;
}
if (GlobalContext::SymbolAbstractNameIsFree(buffer)) {
// Name found
break;
}
currentNumber++;
}
assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize);
}
CartesianFunction CartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) {
static int s_colorIndex = 0;
// Create the record
char nameBuffer[SymbolAbstract::k_maxNameSize];
int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor);
CartesianFunctionRecordDataBuffer data(Palette::DataColor[s_colorIndex++ % numberOfColors]);
if (baseName == nullptr) {
DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize);
baseName = nameBuffer;
}
*error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data));
// Return if error
if (*error != Ion::Storage::Record::ErrorStatus::None) {
return CartesianFunction();
}
// Return the CartesianFunction withthe new record
return CartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension));
}
int CartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize, CodePoint arg) {
// Fill buffer with f(x). Keep size for derivative sign.
int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\'');
int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize, arg);
assert(numberOfChars + derivativeSize < bufferSize);
char * firstParenthesis = const_cast<char *>(UTF8Helper::CodePointSearch(buffer, '('));
if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) {
return numberOfChars;
}
memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1);
UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize);
return numberOfChars + derivativeSize;
}
bool CartesianFunction::displayDerivative() const {
return recordData()->displayDerivative();
}
void CartesianFunction::setDisplayDerivative(bool display) {
return recordData()->setDisplayDerivative(display);
}
double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
/* TODO: when we approximate derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(derivative, *context);
}
double CartesianFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const {
// TODO: this does not work yet because integral does not understand UnknownX
Poincare::Integral integral = Poincare::Integral::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(start), Poincare::Float<double>::Builder(end)); // Integral takes ownership of args
/* TODO: when we approximate integral, we might want to simplify the integral
* here. However, we might want to do it once for all x (to avoid lagging in
* the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(integral, *context);
}
Expression::Coordinate2D CartesianFunction::nextMinimumFrom(double start, double step, double max, Context * context) const {
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
return PoincareHelpers::NextMinimum(expressionReduced(context), unknownX, start, step, max, *context);
}
Expression::Coordinate2D CartesianFunction::nextMaximumFrom(double start, double step, double max, Context * context) const {
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
return PoincareHelpers::NextMaximum(expressionReduced(context), unknownX, start, step, max, *context);
}
double CartesianFunction::nextRootFrom(double start, double step, double max, Context * context) const {
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
return PoincareHelpers::NextRoot(expressionReduced(context), unknownX, start, step, max, *context);
}
Expression::Coordinate2D CartesianFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, Expression e) const {
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
return PoincareHelpers::NextIntersection(expressionReduced(context), unknownX, start, step, max, *context, e);
}
void * CartesianFunction::Model::expressionAddress(const Ion::Storage::Record * record) const {
return (char *)record->value().buffer+sizeof(CartesianFunctionRecordDataBuffer);
}
size_t CartesianFunction::Model::expressionSize(const Ion::Storage::Record * record) const {
return record->value().size-sizeof(CartesianFunctionRecordDataBuffer);
}
CartesianFunction::CartesianFunctionRecordDataBuffer * CartesianFunction::recordData() const {
assert(!isNull());
Ion::Storage::Record::Data d = value();
return reinterpret_cast<CartesianFunctionRecordDataBuffer *>(const_cast<void *>(d.buffer));
}
}