Files
Upsilon/apps/shared/cartesian_function.cpp
2019-08-29 11:07:22 +02:00

197 lines
7.7 KiB
C++

#include "cartesian_function.h"
#include "expression_model_store.h"
#include "poincare_helpers.h"
#include <poincare/derivative.h>
#include <poincare/serialization_helper.h>
#include <escher/palette.h>
#include <ion/unicode/utf8_decoder.h>
#include <float.h>
#include <cmath>
using namespace Poincare;
namespace Shared {
void CartesianFunction::DefaultName(char buffer[], size_t bufferSize) {
constexpr int k_maxNumberOfDefaultLetterNames = 4;
static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = {
'f', 'g', 'h', 'p'
};
/* First default names are f, g, h, p and then f0, f1... ie, "f[number]",
* for instance "f12", that does not exist yet in the storage. */
size_t constantNameLength = 1; // 'f', no null-terminating char
assert(bufferSize > constantNameLength+1);
// Find the next available name
int currentNumber = -k_maxNumberOfDefaultLetterNames;
int currentNumberLength = 0;
int availableBufferSize = bufferSize - constantNameLength;
while (currentNumberLength < availableBufferSize) {
// Choose letter
buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0];
// Choose number if required
if (currentNumber >= 0) {
currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize);
} else {
buffer[1] = 0;
}
if (GlobalContext::SymbolAbstractNameIsFree(buffer)) {
// Name found
break;
}
currentNumber++;
}
assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize);
}
CartesianFunction CartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) {
static int s_colorIndex = 0;
// Create the record
char nameBuffer[SymbolAbstract::k_maxNameSize];
int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor);
CartesianFunctionRecordDataBuffer data(Palette::DataColor[s_colorIndex++ % numberOfColors]);
if (baseName == nullptr) {
DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize);
baseName = nameBuffer;
}
*error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data));
// Return if error
if (*error != Ion::Storage::Record::ErrorStatus::None) {
return CartesianFunction();
}
// Return the CartesianFunction withthe new record
return CartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension));
}
int CartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) {
// Fill buffer with f(x). Keep size for derivative sign.
int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\'');
int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize);
assert(numberOfChars + derivativeSize < (int)bufferSize);
char * firstParenthesis = const_cast<char *>(UTF8Helper::CodePointSearch(buffer, '('));
if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) {
return numberOfChars;
}
memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1);
UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize);
return numberOfChars + derivativeSize;
}
Poincare::Expression CartesianFunction::expressionReduced(Poincare::Context * context) const {
Poincare::Expression result = ExpressionModelHandle::expressionReduced(context);
if (plotType() == PlotType::Parametric && (
result.type() != Poincare::ExpressionNode::Type::Matrix ||
static_cast<Poincare::Matrix&>(result).numberOfRows() != 2 ||
static_cast<Poincare::Matrix&>(result).numberOfColumns() != 1)
) {
return Poincare::Expression::Parse("[[undef][undef]]");
}
return result;
}
CodePoint CartesianFunction::symbol() const {
switch (plotType()) {
case PlotType::Cartesian:
return 'x';
case PlotType::Polar:
return UCodePointGreekSmallLetterTheta;
default:
assert(plotType() == PlotType::Parametric);
return 't';
}
}
CartesianFunction::PlotType CartesianFunction::plotType() const {
return recordData()->plotType();
}
void CartesianFunction::setPlotType(PlotType plotType) {
/* Reset memoized layout. */
m_model.tidy();
return recordData()->setPlotType(plotType);
}
Coordinate2D<double> CartesianFunction::evaluateXYAtParameter(double t, Poincare::Context * context) const {
Coordinate2D<double> x1x2 = evaluate2DAtParameter(t, context);
PlotType type = plotType();
if (type == PlotType::Cartesian || type == PlotType::Parametric) {
return x1x2;
}
assert(type == PlotType::Polar);
return Coordinate2D<double>(x1x2.y() * std::cos(x1x2.x()*3.14/180.0), x1x2.y() * std::sin(x1x2.x()*3.14/180.0)); //TODO LEA RUBEN
}
bool CartesianFunction::displayDerivative() const {
return recordData()->displayDerivative();
}
void CartesianFunction::setDisplayDerivative(bool display) {
return recordData()->setDisplayDerivative(display);
}
double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
/* TODO: when we approximate derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(derivative, context);
}
double CartesianFunction::tMin() const {
return recordData()->tMin();
}
double CartesianFunction::tMax() const {
return recordData()->tMax();
}
void CartesianFunction::setTMin(double tMin) {
recordData()->setTMin(tMin);
}
void CartesianFunction::setTMax(double tMax) {
recordData()->setTMax(tMax);
}
void * CartesianFunction::Model::expressionAddress(const Ion::Storage::Record * record) const {
return (char *)record->value().buffer+sizeof(CartesianFunctionRecordDataBuffer);
}
size_t CartesianFunction::Model::expressionSize(const Ion::Storage::Record * record) const {
return record->value().size-sizeof(CartesianFunctionRecordDataBuffer);
}
CartesianFunction::CartesianFunctionRecordDataBuffer * CartesianFunction::recordData() const {
assert(!isNull());
Ion::Storage::Record::Data d = value();
return reinterpret_cast<CartesianFunctionRecordDataBuffer *>(const_cast<void *>(d.buffer));
}
template<typename T>
Coordinate2D<T> CartesianFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const {
if (isCircularlyDefined(context)) {
return Coordinate2D<T>(NAN, NAN);
}
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknown[bufferSize];
Poincare::SerializationHelper::CodePoint(unknown, bufferSize, symbol());
PlotType type = plotType();
if (type == PlotType::Cartesian || type == PlotType::Polar) {
return Coordinate2D<T>(t, PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(context), unknown, t, context));
}
assert(type == PlotType::Parametric);
Expression e = expressionReduced(context);
assert(e.type() == ExpressionNode::Type::Matrix);
assert(static_cast<Poincare::Matrix&>(e).numberOfRows() == 2);
assert(static_cast<Poincare::Matrix&>(e).numberOfColumns() == 1);
return Coordinate2D<T>(
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context),
PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context));
}
template Coordinate2D<float> CartesianFunction::templatedApproximateAtParameter<float>(float, Poincare::Context *) const;
template Coordinate2D<double> CartesianFunction::templatedApproximateAtParameter<double>(double, Poincare::Context *) const;
}