mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 08:47:28 +01:00
69 lines
1.7 KiB
C++
69 lines
1.7 KiB
C++
#include "script_template.h"
|
|
|
|
namespace Code {
|
|
|
|
constexpr ScriptTemplate emptyScriptTemplate(".py", R"(from math import *
|
|
)");
|
|
|
|
constexpr ScriptTemplate factorialScriptTemplate("factorial.py", R"(def factorial(n):
|
|
if n == 0:
|
|
return 1
|
|
else:
|
|
return n * factorial(n-1))");
|
|
|
|
constexpr ScriptTemplate fibonacciScriptTemplate("fibonacci.py", R"(def fibo(n):
|
|
a=0
|
|
b=1
|
|
for i in range(1,n+1):
|
|
c=a+b
|
|
a=b
|
|
b=c
|
|
return a
|
|
|
|
def fibo2(n):
|
|
if n==0:
|
|
return 0
|
|
elif n==1 or n==2:
|
|
return 1
|
|
return fibo2(n-1)+fibo2(n-2))");
|
|
|
|
constexpr ScriptTemplate mandelbrotScriptTemplate("mandelbrot.py", R"(# This script draws a Mandelbrot fractal set
|
|
# N_iteration: degree of precision
|
|
import kandinsky
|
|
def mandelbrot(N_iteration):
|
|
for x in range(320):
|
|
for y in range(222):
|
|
# Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i)
|
|
z = complex(0,0)
|
|
# Rescale to fit the drawing screen 320x222
|
|
c = complex(3.5*x/319-2.5, -2.5*y/221+1.25)
|
|
i = 0
|
|
while (i < N_iteration) and abs(z) < 2:
|
|
i = i + 1
|
|
z = z*z+c
|
|
# Choose the color of the dot from the Mandelbrot sequence
|
|
rgb = int(255*i/N_iteration)
|
|
col = kandinsky.color(int(rgb),int(rgb*0.75),int(rgb*0.25))
|
|
# Draw a pixel colored in 'col' at position (x,y)
|
|
kandinsky.set_pixel(x,y,col))");
|
|
|
|
const ScriptTemplate * ScriptTemplate::Empty() {
|
|
return &emptyScriptTemplate;
|
|
}
|
|
|
|
const ScriptTemplate * ScriptTemplate::Factorial() {
|
|
return &factorialScriptTemplate;
|
|
}
|
|
|
|
const ScriptTemplate * ScriptTemplate::Fibonacci() {
|
|
return &fibonacciScriptTemplate;
|
|
}
|
|
|
|
const ScriptTemplate * ScriptTemplate::Mandelbrot() {
|
|
return &mandelbrotScriptTemplate;
|
|
}
|
|
|
|
}
|
|
|
|
|