Files
Upsilon/apps/regression/model/trigonometric_model.cpp
Ruben Dashyan 61b1b8a09d [poincare] Add Expression::FunctionHelper class
That class is meant to contain data about named functions (e.g. sin,
tan...) in one place: their name, their number of children and a pointer to
a builder. The derived class corresponding to each such function
contains a private instance (m_functionHelper) and a getter.
The previous parser is removed, along with unecessary
constructors (used by the previous parsers).
2018-11-23 12:04:05 +01:00

100 lines
3.1 KiB
C++

#include "trigonometric_model.h"
#include "../../shared/poincare_helpers.h"
#include <math.h>
#include <poincare/preferences.h>
#include <assert.h>
#include <poincare/char_layout.h>
#include <poincare/horizontal_layout.h>
#include <poincare/vertical_offset_layout.h>
#include <poincare/number.h>
#include <poincare/symbol.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/power.h>
#include <poincare/sine.h>
using namespace Poincare;
using namespace Shared;
namespace Regression {
Layout TrigonometricModel::layout() {
if (m_layout.isUninitialized()) {
const Layout layoutChildren[] = {
CharLayout('a', KDFont::SmallFont),
CharLayout(Ion::Charset::MiddleDot, KDFont::SmallFont),
CharLayout('s', KDFont::SmallFont),
CharLayout('i', KDFont::SmallFont),
CharLayout('n', KDFont::SmallFont),
CharLayout('(', KDFont::SmallFont),
CharLayout('b', KDFont::SmallFont),
CharLayout(Ion::Charset::MiddleDot, KDFont::SmallFont),
CharLayout('X', KDFont::SmallFont),
CharLayout('+', KDFont::SmallFont),
CharLayout('c', KDFont::SmallFont),
CharLayout(')', KDFont::SmallFont),
CharLayout('+', KDFont::SmallFont),
CharLayout('d', KDFont::SmallFont)
};
m_layout = HorizontalLayout(layoutChildren, 14);
}
return m_layout;
}
Expression TrigonometricModel::simplifiedExpression(double * modelCoefficients, Poincare::Context * context) {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
double c = modelCoefficients[2];
double d = modelCoefficients[3];
// a*sin(bx+c)+d
Expression result =
Addition(
Multiplication(
Number::DecimalNumber(a),
Sine::Builder(
Addition(
Multiplication(
Number::DecimalNumber(b),
Symbol('x')),
Number::DecimalNumber(c)))),
Number::DecimalNumber(d));
PoincareHelpers::Simplify(&result, *context);
return result;
}
double TrigonometricModel::evaluate(double * modelCoefficients, double x) const {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
double c = modelCoefficients[2];
double d = modelCoefficients[3];
double radianX = Poincare::Preferences::sharedPreferences()->angleUnit() == Poincare::Preferences::AngleUnit::Radian ? x : x * M_PI/180.0;
return a*sin(b*radianX+c)+d;
}
double TrigonometricModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
double c = modelCoefficients[2];
double radianX = Poincare::Preferences::sharedPreferences()->angleUnit() == Poincare::Preferences::AngleUnit::Radian ? x : x * M_PI/180.0;
if (derivateCoefficientIndex == 0) {
// Derivate: sin(b*x+c)
return sin(b*radianX+c);
}
if (derivateCoefficientIndex == 1) {
// Derivate: x*a*cos(b*x+c);
return radianX*a*cos(b*radianX+c);
}
if (derivateCoefficientIndex == 2) {
// Derivate: a*cos(b*x+c)
return a*cos(b*radianX+c);
}
if (derivateCoefficientIndex == 3) {
// Derivate: 1
return 1.0;
}
assert(false);
return 0.0;
}
}