odométrie fonctionnelle avec l'axe X et Y et l'angle Theta

This commit is contained in:
dd060606
2025-04-03 16:00:42 +02:00
parent f598892bb3
commit ce0d679829

View File

@@ -13,18 +13,19 @@ extern TIM_HandleTypeDef htim21;
extern UART_HandleTypeDef huart2;
// Variables globales
#define IMPULSIONS 600
#define WHEEL_DIAMETER 0.082
#define WHEEL_BASE 0.17
#define MAX_COUNT 65535
// Constants
#define COUNTS_PER_REV 2400.0f // 600 PPR × 4
#define WHEEL_DIAMETER 0.081f // meters
#define WHEEL_BASE 0.287f // meters
#define WHEEL_CIRCUMFERENCE (M_PI * WHEEL_DIAMETER)
// Contrôle des moteurs
Motor motor(TIM3);
// Données odométriques
volatile int lastPosRight = 0, lastPosLeft = 0;
volatile float totalDistance = 0.0f;
volatile float posX = 0.0f, posY = 0.0f, theta = 0.0f;
uint16_t lastPosRight, lastPosLeft;
// x et y sont en mètres
float x, y, theta;
uint32_t lastTick = 0;
@@ -38,63 +39,58 @@ bool isDelayPassed(uint32_t delay) {
void ModelecOdometrySetup() {
HAL_UART_Transmit(&huart2, (uint8_t*) "SETUP COMPLETE\n", 15, HAL_MAX_DELAY);
lastPosRight = __HAL_TIM_GET_COUNTER(&htim2);
lastPosLeft = __HAL_TIM_GET_COUNTER(&htim21);
x=0.0f;
y=0.0f;
theta=0.0f;
motor.accelerer(300);
}
void ModelecOdometryUpdate() {
int posRight = __HAL_TIM_GET_COUNTER(&htim2);
int posLeft = __HAL_TIM_GET_COUNTER(&htim21);
//On récupère la valeur des compteurs
uint16_t posRight = __HAL_TIM_GET_COUNTER(&htim2);
uint16_t posLeft = __HAL_TIM_GET_COUNTER(&htim21);
int deltaP_right = posRight - lastPosRight;
int deltaP_left = posLeft - lastPosLeft;
//On calcule les deltas
int16_t deltaLeft = (int16_t)(posLeft - lastPosLeft);
int16_t deltaRight = (int16_t)(posRight - lastPosRight);
if (deltaP_right > MAX_COUNT / 2) deltaP_right -= MAX_COUNT;
if (deltaP_right < -MAX_COUNT / 2) deltaP_right += MAX_COUNT;
if (deltaP_left > MAX_COUNT / 2) deltaP_left -= MAX_COUNT;
if (deltaP_left < -MAX_COUNT / 2) deltaP_left += MAX_COUNT;
float deltaS_right = ((deltaP_right / (float)(IMPULSIONS * 4)) * M_PI * WHEEL_DIAMETER) * 1000.0f;
float deltaS_left = ((deltaP_left / (float)(IMPULSIONS * 4)) * M_PI * WHEEL_DIAMETER) * 1000.0f;
float deltaS = (deltaS_right + deltaS_left) / 2.0f;
//Calcul de l'angle theta
float deltaTheta = (deltaS_right - deltaS_left) / WHEEL_BASE;
if (fabs(deltaP_right - deltaP_left) < 5) { // Seulement si on est "presque" en ligne droite
if (fabs(deltaTheta) > 0.1) {
deltaTheta = 0;
}
}
//On met à jour la distance parcourue totale
totalDistance += fabs(deltaS);
theta += deltaTheta;
// Normalisation de theta dans [-π, π]
theta = fmod(theta + M_PI, 2 * M_PI) - M_PI;
float deltaX = deltaS * cos(theta);
float deltaY = deltaS * sin(theta);
//Mise à jour de la position X et Y
posX += deltaX;
posY += deltaY;
lastPosRight = posRight;
//On met à jour la dernière position
lastPosLeft = posLeft;
lastPosRight = posRight;
//On convertit en distance (mètres)
float distLeft = (deltaLeft / COUNTS_PER_REV) * WHEEL_CIRCUMFERENCE;
float distRight = (deltaRight / COUNTS_PER_REV) * WHEEL_CIRCUMFERENCE;
//On calcule les déplacements
float linear = (distLeft + distRight) / 2.0f;
float deltaTheta = (distRight - distLeft) / WHEEL_BASE;
//On met à jour la position
float avgTheta = theta + deltaTheta / 2.0f;
x += linear * cosf(avgTheta);
y += linear * sinf(avgTheta);
theta += deltaTheta;
//On normalise theta
theta = fmodf(theta, 2.0f * M_PI);
if (theta < 0) theta += 2.0f * M_PI;
char msg[128];
sprintf(msg, "X: %.3f mm, Y: %.3f mm, Theta: %.3f rad, Distance: %.3f mm\r\n", posX, posY, theta, totalDistance);
sprintf(msg, "X: %.3f m, Y: %.3f m, Theta: %.3f rad\r\n", x, y, theta);
HAL_UART_Transmit(&huart2, (uint8_t *)msg, strlen(msg), HAL_MAX_DELAY);
}
void ModelecOdometryLoop() {
GPIOC->ODR ^= (1 << 10);
//On met à jour toutes les 10ms
if (isDelayPassed(10)) {
ModelecOdometryUpdate();
motor.update();
if (posX >= 200) {
if (x >= 0.20) {
motor.stop();
}
}