[apps/regression] Fix regression

This commit is contained in:
Léa Saviot
2018-05-30 12:20:10 +02:00
parent 2f9de351d3
commit 1f02b8201e
7 changed files with 156 additions and 119 deletions

View File

@@ -32,7 +32,7 @@ App * App::Snapshot::unpack(Container * container) {
}
void App::Snapshot::reset() {
m_store.deleteAllPairsOfAllSeries();
m_store.deleteAllPairs();
m_store.setDefault();
m_modelVersion = 0;
m_rangeVersion = 0;

View File

@@ -163,7 +163,7 @@ void CalculationController::willDisplayCellAtLocation(HighlightCell * cell, int
}
if (i == 1 && j > k_totalNumberOfDoubleBufferRows) {
assert(j != 9);
CalculPointer calculationMethods[k_totalNumberOfRows-k_totalNumberOfDoubleBufferRows] = {&Store::numberOfPairs, &Store::covariance,
CalculPointer calculationMethods[k_totalNumberOfRows-k_totalNumberOfDoubleBufferRows] = {&Store::doubleCastedNumberOfPairsOfSeries, &Store::covariance,
&Store::columnProductSum, nullptr, &Store::slope, &Store::yIntercept, &Store::correlationCoefficient, &Store::squaredCorrelationCoefficient};
double calculation = (m_store->*calculationMethods[j-k_totalNumberOfDoubleBufferRows-1])();
EvenOddBufferTextCell * myCell = (EvenOddBufferTextCell *)cell;

View File

@@ -26,10 +26,15 @@ ViewController * GraphController::initialisationParameterController() {
}
bool GraphController::isEmpty() const {
if (m_store->numberOfPairs() < 2 || std::isinf(m_store->slope()) || std::isnan(m_store->slope())) {
if (m_store->isEmpty()) {
return true;
}
return false;
for (int series = 0; series < FloatPairStore::k_numberOfSeries; series++) {
if (!m_store->seriesIsEmpty(series) && !std::isinf(m_store->slope(series)) && (std::isnan(m_store->slope(series)))) {
return false;
}
}
return true;
}
I18n::Message GraphController::emptyMessage() {

View File

@@ -9,7 +9,8 @@ GraphView::GraphView(Store * store, CurveViewCursor * cursor, BannerView * banne
CurveView(store, cursor, bannerView, cursorView),
m_store(store),
m_xLabels{},
m_yLabels{}
m_yLabels{},
m_series(0) //TODO
{
}
@@ -20,17 +21,17 @@ void GraphView::drawRect(KDContext * ctx, KDRect rect) const {
drawAxes(ctx, rect, Axis::Vertical);
drawLabels(ctx, rect, Axis::Horizontal, true);
drawLabels(ctx, rect, Axis::Vertical, true);
float regressionParameters[2] = {(float)m_store->slope(), (float)m_store->yIntercept()};
float regressionParameters[2] = {(float)m_store->slope(m_series), (float)m_store->yIntercept(m_series)};
drawCurve(ctx, rect, [](float abscissa, void * model, void * context) {
float * params = (float *)model;
return params[0]*abscissa+params[1];
},
regressionParameters, nullptr, Palette::YellowDark);
for (int index = 0; index < m_store->numberOfPairs(); index++) {
drawDot(ctx, rect, m_store->get(0,index), m_store->get(1,index), Palette::Red);
drawDot(ctx, rect, m_store->get(m_series, 0,index), m_store->get(m_series, 1,index), Palette::Red);
}
drawDot(ctx, rect, m_store->meanOfColumn(0), m_store->meanOfColumn(1), Palette::Palette::YellowDark, true);
drawDot(ctx, rect, m_store->meanOfColumn(0), m_store->meanOfColumn(1), KDColorWhite);
drawDot(ctx, rect, m_store->meanOfColumn(m_series, 0), m_store->meanOfColumn(m_series, 1), Palette::Palette::YellowDark, true);
drawDot(ctx, rect, m_store->meanOfColumn(m_series, 0), m_store->meanOfColumn(m_series, 1), KDColorWhite);
}
char * GraphView::label(Axis axis, int index) const {

View File

@@ -17,6 +17,7 @@ private:
Store * m_store;
char m_xLabels[k_maxNumberOfXLabels][Poincare::PrintFloat::bufferSizeForFloatsWithPrecision(Constant::ShortNumberOfSignificantDigits)];
char m_yLabels[k_maxNumberOfYLabels][Poincare::PrintFloat::bufferSizeForFloatsWithPrecision(Constant::ShortNumberOfSignificantDigits)];
int m_series;
};
}

View File

@@ -8,6 +8,9 @@ using namespace Shared;
namespace Regression {
static inline float max(float x, float y) { return (x>y ? x : y); }
static inline float min(float x, float y) { return (x<y ? x : y); }
Store::Store() :
InteractiveCurveViewRange(nullptr, this),
FloatPairStore()
@@ -16,7 +19,7 @@ Store::Store() :
/* Dots */
int Store::closestVerticalDot(int series, int direction, float x) {
int Store::closestVerticalDot(int direction, float x) {
float nextX = INFINITY;
float nextY = INFINITY;
int selectedDot = -1;
@@ -25,82 +28,87 @@ int Store::closestVerticalDot(int series, int direction, float x) {
* - the next dot is the closest one in abscissa to x
* - the next dot is above the regression curve if direction == 1 and below
* otherwise */
for (int index = 0; index < m_numberOfPairs[series]; index++) {
if ((m_xMin <= m_data[series][0][index] && m_data[series][0][index] <= m_xMax) &&
(std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x)) &&
((m_data[series][1][index] - yValueForXValue(m_data[series][0][index]) >= 0) == (direction > 0))) {
// Handle edge case: if 2 dots have the same abscissa but different ordinates
if (nextX != m_data[series][0][index] || ((nextY - m_data[series][1][index] >= 0) == (direction > 0))) {
nextX = m_data[series][0][index];
nextY = m_data[series][1][index];
selectedDot = index;
for (int series = 0; series < k_numberOfSeries; series ++) {
if (!seriesIsEmpty(series)) {
for (int index = 0; index < numberOfPairsOfSeries(series); index++) {
if ((m_xMin <= m_data[series][0][index] && m_data[series][0][index] <= m_xMax) &&
(std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x)) &&
((m_data[series][1][index] - yValueForXValue(series, m_data[series][0][index]) >= 0) == (direction > 0))) {
// Handle edge case: if 2 dots have the same abscissa but different ordinates
if (nextX != m_data[series][0][index] || ((nextY - m_data[series][1][index] >= 0) == (direction > 0))) {
nextX = m_data[series][0][index];
nextY = m_data[series][1][index];
selectedDot = index;
}
}
}
}
}
// Compare with the mean dot
double meanX = meanOfColumn(series, 0);
double meanY = meanOfColumn(series, 1);
if (m_xMin <= meanX && meanX <= m_xMax &&
(std::fabs(meanX - x) < std::fabs(nextX - x)) &&
((meanY - yValueForXValue(meanX) >= 0) == (direction > 0))) {
if (nextX != meanX || ((nextY - meanY >= 0) == (direction > 0))) {
selectedDot = m_numberOfPairs[series];
// Compare with the mean dot
double meanX = meanOfColumn(series, 0);
double meanY = meanOfColumn(series, 1);
if (m_xMin <= meanX && meanX <= m_xMax &&
(std::fabs(meanX - x) < std::fabs(nextX - x)) &&
((meanY - yValueForXValue(series, meanX) >= 0) == (direction > 0))) {
if (nextX != meanX || ((nextY - meanY >= 0) == (direction > 0))) {
selectedDot = numberOfPairsOfSeries(series);
}
}
}
return selectedDot;
}
int Store::nextDot(int direction, int dot) {
int Store::nextDot(int series, int direction, int dot) {
float nextX = INFINITY;
int selectedDot = -1;
double meanX = meanOfColumn(series, 0);
float x = meanX;
if (dot >= 0 && dot < m_numberOfPairs[series]) {
x = get(0, dot);
if (dot >= 0 && dot < numberOfPairsOfSeries(series)) {
x = get(series, 0, dot);
}
/* We have to scan the Store in opposite ways for the 2 directions to ensure to
* select all dots (even with equal abscissa) */
if (direction > 0) {
for (int index = 0; index < m_numberOfPairs[series]; index++) {
for (int index = 0; index < numberOfPairsOfSeries(series); index++) {
/* The conditions to test are in this order:
* - the next dot is the closest one in abscissa to x
* - the next dot is not the same as the selected one
* - the next dot is at the right of the selected one */
if (std::fabs(m_date[series][0][index] - x) < std::fabs(nextX - x) &&
if (std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x) &&
(index != dot) &&
(m_date[series][0][index] >= x)) {
(m_data[series][0][index] >= x)) {
// Handle edge case: 2 dots have same abscissa
if (m_date[series][0][index] != x || (index > dot)) {
nextX = m_date[series][0][index];
if (m_data[series][0][index] != x || (index > dot)) {
nextX = m_data[series][0][index];
selectedDot = index;
}
}
}
// Compare with the mean dot
if (std::fabs(meanX - x) < std::fabs(nextX - x) &&
(m_numberOfPairs[series] != dot) &&
(numberOfPairsOfSeries(series) != dot) &&
(meanX >= x)) {
if (meanX != x || (x > dot)) {
selectedDot = m_numberOfPairs[series];
selectedDot = numberOfPairsOfSeries(series);
}
}
} else {
// Compare with the mean dot
if (std::fabs(meanX - x) < std::fabs(nextX - x) &&
(m_numberOfPairs[series] != dot) &&
(numberOfPairsOfSeries(series) != dot) &&
(meanX <= x)) {
if (meanX != x || (m_numberOfPairs[series] < dot)) {
if (meanX != x || (numberOfPairsOfSeries(series) < dot)) {
nextX = meanX;
selectedDot = m_numberOfPairs[series];
selectedDot = numberOfPairsOfSeries(series);
}
}
for (int index = m_numberOfPairs[series]-1; index >= 0; index--) {
if (std::fabs(m_date[series][0][index] - x) < std::fabs(nextX - x) &&
for (int index = numberOfPairsOfSeries(series)-1; index >= 0; index--) {
if (std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x) &&
(index != dot) &&
(m_date[series][0][index] <= x)) {
(m_data[series][0][index] <= x)) {
// Handle edge case: 2 dots have same abscissa
if (m_date[series][0][index] != x || (index < dot)) {
nextX = m_date[series][0][index];
if (m_data[series][0][index] != x || (index < dot)) {
nextX = m_data[series][0][index];
selectedDot = index;
}
}
@@ -111,115 +119,132 @@ int Store::nextDot(int direction, int dot) {
/* Window */
void Store::setDefault(int series) {
float min = minValueOfColumn(series, 0);
float max = maxValueOfColumn(series, 0);
float range = max - min;
setXMin(min - k_displayLeftMarginRatio*range);
setXMax(max + k_displayRightMarginRatio*range);
void Store::setDefault() {
float minX = FLT_MAX;
float maxX = -FLT_MAX;
for (int series = 0; series < k_numberOfSeries; series ++) {
if (!seriesIsEmpty(series)) {
minX = min(minX, minValueOfColumn(series, 0));
maxX = max(maxX, maxValueOfColumn(series, 0));
}
}
float range = maxX - minX;
setXMin(minX - k_displayLeftMarginRatio*range);
setXMax(maxX + k_displayRightMarginRatio*range);
setYAuto(true);
}
bool Store::isEmpty() const {
for (int i = 0; i < k_numberOfSeries; i ++) {
if (!seriesIsEmpty(i)) {
return false;
}
}
return true;
}
bool Store::seriesIsEmpty(int series) const {
return numberOfPairsOfSeries(series) < 2;
}
/* Calculations */
float Store::maxValueOfColumn(int series, int i) {
float max = -FLT_MAX;
for (int k = 0; k < m_numberOfPairs[series]; k++) {
if (m_data[series][i][k] > max) {
max = m_data[series][i][k];
}
}
return max;
double Store::doubleCastedNumberOfPairsOfSeries(int series) const {
return FloatPairStore::numberOfPairsOfSeries(series);
}
float Store::minValueOfColumn(int series, int i) {
float min = FLT_MAX;
for (int k = 0; k < m_numberOfPairs[series]; k++) {
if (m_data[series][i][k] < min) {
min = m_data[series][i][k];
}
float Store::maxValueOfColumn(int series, int i) const {
float maxColumn = -FLT_MAX;
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
maxColumn = max(maxColumn, m_data[series][i][k]);
}
return min;
return maxColumn;
}
double Store::squaredValueSumOfColumn(int series, int i) {
float Store::minValueOfColumn(int series, int i) const {
float minColumn = FLT_MAX;
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
minColumn = min(minColumn, m_data[series][i][k]);
}
return minColumn;
}
double Store::squaredValueSumOfColumn(int series, int i) const {
double result = 0;
for (int k = 0; k < m_numberOfPairs[series]; k++) {
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
result += m_data[series][i][k]*m_data[series][i][k];
}
return result;
}
double Store::columnProductSum(int series) {
double Store::columnProductSum(int series) const {
double result = 0;
for (int k = 0; k < m_numberOfPairs[series]; k++) {
result += m_date[series][0][k]*m_date[series][1][k];
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
result += m_data[series][0][k]*m_data[series][1][k];
}
return result;
}
double Store::meanOfColumn(int series, int i) {
return m_numberOfPairs[series] == 0 ? 0 : sumOfColumn(series, i)/m_numberOfPairs[series];
double Store::meanOfColumn(int series, int i) const {
return numberOfPairsOfSeries(series) == 0 ? 0 : sumOfColumn(series, i)/numberOfPairsOfSeries(series);
}
double Store::varianceOfColumn(int series, int i) {
double Store::varianceOfColumn(int series, int i) const {
double mean = meanOfColumn(series, i);
return squaredValueSumOfColumn(series, i)/m_numberOfPairs[series] - mean*mean;
return squaredValueSumOfColumn(series, i)/numberOfPairsOfSeries(series) - mean*mean;
}
double Store::standardDeviationOfColumn(int series, int i) {
double Store::standardDeviationOfColumn(int series, int i) const {
return std::sqrt(varianceOfColumn(series, i));
}
double Store::covariance(int series) {
return columnProductSum(series)/m_numberOfPairs[series] - meanOfColumn(series, 0)*meanOfColumn(series, 1);
double Store::covariance(int series) const {
return columnProductSum(series)/numberOfPairsOfSeries(series) - meanOfColumn(series, 0)*meanOfColumn(series, 1);
}
double Store::slope(int series) {
double Store::slope(int series) const {
return covariance(series)/varianceOfColumn(series, 0);
}
double Store::yIntercept(int series) {
double Store::yIntercept(int series) const {
return meanOfColumn(series, 1) - slope(series)*meanOfColumn(series, 0);
}
double Store::yValueForXValue(int series, double x) {
double Store::yValueForXValue(int series, double x) const {
return slope(series)*x+yIntercept(series);
}
double Store::xValueForYValue(int series, double y) {
double Store::xValueForYValue(int series, double y) const {
return std::fabs(slope(series)) < DBL_EPSILON ? NAN : (y - yIntercept(series))/slope(series);
}
double Store::correlationCoefficient(int series) {
double Store::correlationCoefficient(int series) const {
double sd0 = standardDeviationOfColumn(series, 0);
double sd1 = standardDeviationOfColumn(series, 1);
return (sd0 == 0.0 || sd1 == 0.0) ? 1.0 : covariance(series)/(sd0*sd1);
}
double Store::squaredCorrelationCoefficient(int series) {
double Store::squaredCorrelationCoefficient(int series) const {
double cov = covariance(series);
double v0 = varianceOfColumn(series, 0);
double v1 = varianceOfColumn(series, 1);
return (v0 == 0.0 || v1 == 0.0) ? 1.0 : cov*cov/(v0*v1);
}
InteractiveCurveViewRangeDelegate::Range Store::computeYRange(int series, InteractiveCurveViewRange * interactiveCurveViewRange) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int k = 0; k < m_numberOfPairs[series]; k++) {
if (m_xMin <= m_date[series][0][k] && m_date[series][0][k] <= m_xMax) {
if (m_date[series][1][k] < min) {
min = m_date[series][1][k];
}
if (m_date[series][1][k] > max) {
max = m_date[series][1][k];
InteractiveCurveViewRangeDelegate::Range Store::computeYRange(InteractiveCurveViewRange * interactiveCurveViewRange) {
float minY = FLT_MAX;
float maxY = -FLT_MAX;
for (int series = 0; series < k_numberOfSeries; series++) {
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
if (m_xMin <= m_data[series][0][k] && m_data[series][0][k] <= m_xMax) {
minY = min(minY, m_data[series][1][k]);
maxY = max(maxY, m_data[series][1][k]);
}
}
}
InteractiveCurveViewRangeDelegate::Range range;
range.min = min;
range.max = max;
range.min = minY;
range.max = maxY;
return range;
}

View File

@@ -9,43 +9,48 @@ namespace Regression {
class Store : public Shared::InteractiveCurveViewRange, public Shared::FloatPairStore, public Shared::InteractiveCurveViewRangeDelegate {
public:
Store();
// Dots
/* Return the closest dot to x above the regression curve if direction > 0,
* below otherwise*/
int closestVerticalDot(int series, int direction, float x);
/* Return the closest dot to dot given on the right if direction > 0,
* on the left otherwise*/
/* Return the closest dot to abscissa x above the regression curve if
* direction > 0, below otherwise */
int closestVerticalDot(int direction, float x);
/* Return the closest dot to given dot, on the right if direction > 0,
* on the left otherwise */
int nextDot(int series, int direction, int dot);
// Window
void setDefault() override;
// Series
bool isEmpty() const;
bool seriesIsEmpty(int series) const;
// Calculation
double numberOfPairs(int series) const { return m_numberOfPairs; }
double squaredValueSumOfColumn(int series, int i);
double columnProductSum(int series);
double meanOfColumn(int series, int i);
double varianceOfColumn(int series, int i);
double standardDeviationOfColumn(int series, int i);
double covariance(int series);
double slope(int series);
double yIntercept(int series);
double yValueForXValue(int series, double x);
double xValueForYValue(int series, double y);
double correlationCoefficient(int series);
double squaredCorrelationCoefficient(int series);
double doubleCastedNumberOfPairsOfSeries(int series) const;
double squaredValueSumOfColumn(int series, int i) const;
double columnProductSum(int series) const;
double meanOfColumn(int series, int i) const;
double varianceOfColumn(int series, int i) const;
double standardDeviationOfColumn(int series, int i) const;
double covariance(int series) const;
double slope(int series) const;
double yIntercept(int series) const;
double yValueForXValue(int series, double x) const;
double xValueForYValue(int series, double y) const;
double correlationCoefficient(int series) const;
double squaredCorrelationCoefficient(int series) const;
private:
constexpr static float k_displayTopMarginRatio = 0.12f;
constexpr static float k_displayRightMarginRatio = 0.05f;
constexpr static float k_displayBottomMarginRatio = 0.5f;
constexpr static float k_displayLeftMarginRatio = 0.05f;
InteractiveCurveViewRangeDelegate::Range computeYRange(int series, InteractiveCurveViewRange * interactiveCurveViewRange) override;
InteractiveCurveViewRangeDelegate::Range computeYRange(InteractiveCurveViewRange * interactiveCurveViewRange) override;
float addMargin(float x, float range, bool isMin) override;
float maxValueOfColumn(int series, int i);
float minValueOfColumn(int series, int i);
float maxValueOfColumn(int series, int i) const;
float minValueOfColumn(int series, int i) const;
};
typedef double (Store::*ArgCalculPointer)(int);
typedef double (Store::*ArgCalculPointer)(int, int) const;
typedef double (Store::*CalculPointer)();
typedef void (Store::*RangeMethodPointer)();